具有空间冲突的车辆调度

O. Kloster, C. Mannino, A. Riise, P. Schittekat
{"title":"具有空间冲突的车辆调度","authors":"O. Kloster, C. Mannino, A. Riise, P. Schittekat","doi":"10.1287/trsc.2021.1119","DOIUrl":null,"url":null,"abstract":"When scheduling the movement of individual vehicles on a traffic network, one must ensure that they never get too close to one another. This is normally modelled by segmenting the network and forbidding two vehicles to occupy the same segment at the same time. This approximation is often insufficient or too restraining. This study develops and systematises the use of conflict regions to model spatial proximity constraints. By extending the classical disjunctive programming approach to job-shop scheduling problems, we demonstrate how conflict regions can be exploited to efficiently schedule the collective movements of a set of vehicles, in this case aircraft moving on an airport ground network. We also show how conflict regions can be used in the short-term control of vehicle speeds to avoid collisions and deadlocks. The overall approach was implemented in a software system for air traffic management at airports and successfully evaluated for scheduling and guiding airplanes during an extensive human in the loop simulation exercise for the Budapest airport. Through simulations, we also provide numerical results to assess the computational efficiency of our scheduling algorithm.","PeriodicalId":23247,"journal":{"name":"Transp. Sci.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scheduling Vehicles with Spatial Conflicts\",\"authors\":\"O. Kloster, C. Mannino, A. Riise, P. Schittekat\",\"doi\":\"10.1287/trsc.2021.1119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When scheduling the movement of individual vehicles on a traffic network, one must ensure that they never get too close to one another. This is normally modelled by segmenting the network and forbidding two vehicles to occupy the same segment at the same time. This approximation is often insufficient or too restraining. This study develops and systematises the use of conflict regions to model spatial proximity constraints. By extending the classical disjunctive programming approach to job-shop scheduling problems, we demonstrate how conflict regions can be exploited to efficiently schedule the collective movements of a set of vehicles, in this case aircraft moving on an airport ground network. We also show how conflict regions can be used in the short-term control of vehicle speeds to avoid collisions and deadlocks. The overall approach was implemented in a software system for air traffic management at airports and successfully evaluated for scheduling and guiding airplanes during an extensive human in the loop simulation exercise for the Budapest airport. Through simulations, we also provide numerical results to assess the computational efficiency of our scheduling algorithm.\",\"PeriodicalId\":23247,\"journal\":{\"name\":\"Transp. Sci.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transp. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/trsc.2021.1119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transp. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/trsc.2021.1119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当在交通网络上安排单个车辆的运动时,必须确保它们彼此之间不会太近。这通常是通过分割网络并禁止两辆车同时占用同一段来建模的。这种近似通常是不充分的或过于限制的。本研究发展并系统化使用冲突地区来模拟空间接近约束。通过将经典的分离规划方法扩展到作业车间调度问题,我们展示了如何利用冲突区域来有效地调度一组车辆的集体运动,在这种情况下,飞机在机场地面网络上移动。我们还展示了如何将冲突区域用于车辆速度的短期控制,以避免碰撞和死锁。整个方法在机场空中交通管理软件系统中实施,并在布达佩斯机场广泛的人在循环模拟演习中成功评估了飞机调度和引导。通过仿真,我们还提供了数值结果来评估我们的调度算法的计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scheduling Vehicles with Spatial Conflicts
When scheduling the movement of individual vehicles on a traffic network, one must ensure that they never get too close to one another. This is normally modelled by segmenting the network and forbidding two vehicles to occupy the same segment at the same time. This approximation is often insufficient or too restraining. This study develops and systematises the use of conflict regions to model spatial proximity constraints. By extending the classical disjunctive programming approach to job-shop scheduling problems, we demonstrate how conflict regions can be exploited to efficiently schedule the collective movements of a set of vehicles, in this case aircraft moving on an airport ground network. We also show how conflict regions can be used in the short-term control of vehicle speeds to avoid collisions and deadlocks. The overall approach was implemented in a software system for air traffic management at airports and successfully evaluated for scheduling and guiding airplanes during an extensive human in the loop simulation exercise for the Budapest airport. Through simulations, we also provide numerical results to assess the computational efficiency of our scheduling algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信