一般可加性网络效应模型

Trang Bui, Stefan H. Steiner, Nathaniel T. Stevens
{"title":"一般可加性网络效应模型","authors":"Trang Bui, Stefan H. Steiner, Nathaniel T. Stevens","doi":"10.51387/23-nejsds29","DOIUrl":null,"url":null,"abstract":"In the interest of business innovation, social network companies often carry out experiments to test product changes and new ideas. In such experiments, users are typically assigned to one of two experimental conditions with some outcome of interest observed and compared. In this setting, the outcome of one user may be influenced by not only the condition to which they are assigned but also the conditions of other users via their network connections. This challenges classical experimental design and analysis methodologies and requires specialized methods. We introduce the general additive network effect (GANE) model, which encompasses many existing outcome models in the literature under a unified model-based framework. The model is both interpretable and flexible in modeling the treatment effect as well as the network influence. We show that (quasi) maximum likelihood estimators are consistent and asymptotically normal for a family of model specifications. Quantities of interest such as the global treatment effect are defined and expressed as functions of the GANE model parameters, and hence inference can be carried out using likelihood theory. We further propose the “power-degree” (POW-DEG) specification of the GANE model. The performance of POW-DEG and other specifications of the GANE model are investigated via simulations. Under model misspecification, the POW-DEG specification appears to work well. Finally, we study the characteristics of good experimental designs for the POW-DEG specification. We find that graph-cluster randomization and balanced designs are not necessarily optimal for precise estimation of the global treatment effect, indicating the need for alternative design strategies.","PeriodicalId":94360,"journal":{"name":"The New England Journal of Statistics in Data Science","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"General Additive Network Effect Models\",\"authors\":\"Trang Bui, Stefan H. Steiner, Nathaniel T. Stevens\",\"doi\":\"10.51387/23-nejsds29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the interest of business innovation, social network companies often carry out experiments to test product changes and new ideas. In such experiments, users are typically assigned to one of two experimental conditions with some outcome of interest observed and compared. In this setting, the outcome of one user may be influenced by not only the condition to which they are assigned but also the conditions of other users via their network connections. This challenges classical experimental design and analysis methodologies and requires specialized methods. We introduce the general additive network effect (GANE) model, which encompasses many existing outcome models in the literature under a unified model-based framework. The model is both interpretable and flexible in modeling the treatment effect as well as the network influence. We show that (quasi) maximum likelihood estimators are consistent and asymptotically normal for a family of model specifications. Quantities of interest such as the global treatment effect are defined and expressed as functions of the GANE model parameters, and hence inference can be carried out using likelihood theory. We further propose the “power-degree” (POW-DEG) specification of the GANE model. The performance of POW-DEG and other specifications of the GANE model are investigated via simulations. Under model misspecification, the POW-DEG specification appears to work well. Finally, we study the characteristics of good experimental designs for the POW-DEG specification. We find that graph-cluster randomization and balanced designs are not necessarily optimal for precise estimation of the global treatment effect, indicating the need for alternative design strategies.\",\"PeriodicalId\":94360,\"journal\":{\"name\":\"The New England Journal of Statistics in Data Science\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The New England Journal of Statistics in Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51387/23-nejsds29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The New England Journal of Statistics in Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51387/23-nejsds29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

出于商业创新的兴趣,社交网络公司经常进行实验,以测试产品的变化和新的想法。在这样的实验中,用户通常被分配到两个实验条件之一,观察和比较一些感兴趣的结果。在这种情况下,一个用户的结果不仅会受到分配给他的条件的影响,还会受到通过网络连接的其他用户的条件的影响。这挑战了经典的实验设计和分析方法,需要专门的方法。我们引入了一般的可加性网络效应(GANE)模型,该模型在一个统一的基于模型的框架下涵盖了文献中许多现有的结果模型。该模型在模拟治疗效果和网络影响方面具有可解释性和灵活性。我们证明了(拟)极大似然估计量对于一组模型规格是一致的和渐近正态的。如整体治疗效果等感兴趣的量被定义并表示为GANE模型参数的函数,因此可以使用似然理论进行推理。我们进一步提出了game模型的“幂度”(POW-DEG)规范。通过仿真研究了POW-DEG和GANE模型的其他规格的性能。在模型不规范的情况下,POW-DEG规范表现良好。最后,我们研究了良好的POW-DEG规范实验设计的特点。我们发现图簇随机化和平衡设计对于精确估计整体治疗效果并不一定是最佳的,这表明需要替代设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
General Additive Network Effect Models
In the interest of business innovation, social network companies often carry out experiments to test product changes and new ideas. In such experiments, users are typically assigned to one of two experimental conditions with some outcome of interest observed and compared. In this setting, the outcome of one user may be influenced by not only the condition to which they are assigned but also the conditions of other users via their network connections. This challenges classical experimental design and analysis methodologies and requires specialized methods. We introduce the general additive network effect (GANE) model, which encompasses many existing outcome models in the literature under a unified model-based framework. The model is both interpretable and flexible in modeling the treatment effect as well as the network influence. We show that (quasi) maximum likelihood estimators are consistent and asymptotically normal for a family of model specifications. Quantities of interest such as the global treatment effect are defined and expressed as functions of the GANE model parameters, and hence inference can be carried out using likelihood theory. We further propose the “power-degree” (POW-DEG) specification of the GANE model. The performance of POW-DEG and other specifications of the GANE model are investigated via simulations. Under model misspecification, the POW-DEG specification appears to work well. Finally, we study the characteristics of good experimental designs for the POW-DEG specification. We find that graph-cluster randomization and balanced designs are not necessarily optimal for precise estimation of the global treatment effect, indicating the need for alternative design strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信