{"title":"微蜂窝/皮蜂窝蜂窝网络的系统级节能方法","authors":"Z. Abbas, F. Li","doi":"10.1109/WIRELESSVITAE.2011.5940872","DOIUrl":null,"url":null,"abstract":"Network power consumption reduction has recently become an active research topic. In this paper, we propose a novel approach to save power consumption of a three-cell microcellular network. When the traffic load in the middle cell is low, it can be switched-off and its users are covered. This is enabled by increasing the transmission power of one sector antenna in the two neighboring cells. Numerical results show that by increasing antenna transmission power of the two sectors, the overall network power consumption can be reduced.","PeriodicalId":68078,"journal":{"name":"无线互联科技","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A system-level power saving approach for cellular networks with microcells/picocells\",\"authors\":\"Z. Abbas, F. Li\",\"doi\":\"10.1109/WIRELESSVITAE.2011.5940872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network power consumption reduction has recently become an active research topic. In this paper, we propose a novel approach to save power consumption of a three-cell microcellular network. When the traffic load in the middle cell is low, it can be switched-off and its users are covered. This is enabled by increasing the transmission power of one sector antenna in the two neighboring cells. Numerical results show that by increasing antenna transmission power of the two sectors, the overall network power consumption can be reduced.\",\"PeriodicalId\":68078,\"journal\":{\"name\":\"无线互联科技\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"无线互联科技\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/WIRELESSVITAE.2011.5940872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"无线互联科技","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/WIRELESSVITAE.2011.5940872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A system-level power saving approach for cellular networks with microcells/picocells
Network power consumption reduction has recently become an active research topic. In this paper, we propose a novel approach to save power consumption of a three-cell microcellular network. When the traffic load in the middle cell is low, it can be switched-off and its users are covered. This is enabled by increasing the transmission power of one sector antenna in the two neighboring cells. Numerical results show that by increasing antenna transmission power of the two sectors, the overall network power consumption can be reduced.