电子轰击泵浦下三能级原子的自发发射

M. Alemu
{"title":"电子轰击泵浦下三能级原子的自发发射","authors":"M. Alemu","doi":"10.13189/ujpa.2020.140102","DOIUrl":null,"url":null,"abstract":"In this paper we have studied the statistical and squeezing properties of the cavity light generated by a three-level laser. In this quantum optical system, N three-level atoms available in an open cavity, coupled to a two-mode vacuum reservoir, are pumped to the top level by means of electron bombardment at constant rate. We have considered the case in which the three-level atoms and the cavity modes interact with the two-mode vacuum reservoir. We have carried out our analysis by putting the noise operators associated with the vacuum reservoir in normal order. Applying the solutions of the equations of evolution for the expectation values of the atomic operators and the quantum Langevin equations for the cavity mode operators, we have calculated the mean and variance of the photon number as well as the quadrature squeezing for the cavity light. In addition, we have shown that the presence of the spontaneous emission process leads to a decrease in the mean and variance of the photon number. We have observed that the two-mode cavity light is in a squeezed state and the squeezing occurs in the minus quadrature. The maximum quadrature squeezing of the light generated by the laser, operating far below threshold, is found to be 50% below the vacuum-state level. We have also established that the mean photon number in the presence of spontaneous emission is less than the absence of spontaneous emission.","PeriodicalId":23443,"journal":{"name":"Universal Journal of Physics and Application","volume":"11 1","pages":"11-22"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Spontaneous Emission by Three-level Atoms Pumped by Electron Bombardment\",\"authors\":\"M. Alemu\",\"doi\":\"10.13189/ujpa.2020.140102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we have studied the statistical and squeezing properties of the cavity light generated by a three-level laser. In this quantum optical system, N three-level atoms available in an open cavity, coupled to a two-mode vacuum reservoir, are pumped to the top level by means of electron bombardment at constant rate. We have considered the case in which the three-level atoms and the cavity modes interact with the two-mode vacuum reservoir. We have carried out our analysis by putting the noise operators associated with the vacuum reservoir in normal order. Applying the solutions of the equations of evolution for the expectation values of the atomic operators and the quantum Langevin equations for the cavity mode operators, we have calculated the mean and variance of the photon number as well as the quadrature squeezing for the cavity light. In addition, we have shown that the presence of the spontaneous emission process leads to a decrease in the mean and variance of the photon number. We have observed that the two-mode cavity light is in a squeezed state and the squeezing occurs in the minus quadrature. The maximum quadrature squeezing of the light generated by the laser, operating far below threshold, is found to be 50% below the vacuum-state level. We have also established that the mean photon number in the presence of spontaneous emission is less than the absence of spontaneous emission.\",\"PeriodicalId\":23443,\"journal\":{\"name\":\"Universal Journal of Physics and Application\",\"volume\":\"11 1\",\"pages\":\"11-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universal Journal of Physics and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13189/ujpa.2020.140102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Physics and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13189/ujpa.2020.140102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文研究了三能级激光产生的腔光的统计特性和压缩特性。在这个量子光学系统中,N个三能级原子在一个开放腔中,耦合到一个双模真空储层,通过电子轰击以恒定速率被泵送到顶层。我们考虑了三能级原子和腔模与双模真空储层相互作用的情况。我们通过将与真空储层相关的噪声算符按正常顺序排列来进行分析。应用原子算符期望值的演化方程解和腔模算符的量子朗之万方程解,计算了腔光的光子数的均值和方差以及正交压缩。此外,我们已经证明了自发发射过程的存在导致光子数的平均值和方差的减小。我们观察到双模腔光处于压缩状态,压缩发生在负正交处。在远低于阈值的情况下,激光产生的光的最大正交压缩比真空状态低50%。我们还确定了有自发发射时的平均光子数小于无自发发射时的平均光子数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spontaneous Emission by Three-level Atoms Pumped by Electron Bombardment
In this paper we have studied the statistical and squeezing properties of the cavity light generated by a three-level laser. In this quantum optical system, N three-level atoms available in an open cavity, coupled to a two-mode vacuum reservoir, are pumped to the top level by means of electron bombardment at constant rate. We have considered the case in which the three-level atoms and the cavity modes interact with the two-mode vacuum reservoir. We have carried out our analysis by putting the noise operators associated with the vacuum reservoir in normal order. Applying the solutions of the equations of evolution for the expectation values of the atomic operators and the quantum Langevin equations for the cavity mode operators, we have calculated the mean and variance of the photon number as well as the quadrature squeezing for the cavity light. In addition, we have shown that the presence of the spontaneous emission process leads to a decrease in the mean and variance of the photon number. We have observed that the two-mode cavity light is in a squeezed state and the squeezing occurs in the minus quadrature. The maximum quadrature squeezing of the light generated by the laser, operating far below threshold, is found to be 50% below the vacuum-state level. We have also established that the mean photon number in the presence of spontaneous emission is less than the absence of spontaneous emission.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信