动态咬合轮廓:蛇的一个新的外部能量术语

M. Covell, Trevor Darrell
{"title":"动态咬合轮廓:蛇的一个新的外部能量术语","authors":"M. Covell, Trevor Darrell","doi":"10.1109/CVPR.1999.784635","DOIUrl":null,"url":null,"abstract":"Dynamic contours, or snakes, provide an effective method for tracking complex moving objects for segmentation and recognition tasks, but have difficulty tracking occluding boundaries on cluttered backgrounds. To compensate for this shortcoming, dynamic contours often rely on detailed object-shape or motion models to distinguish between the boundary of the tracked object and other boundaries in the background. In this paper we present a complementary approach to detailed object models: We improve the discriminative power of the local image measurements that drive the tracking process. We describe a new, robust external-energy term for dynamic contours that can track occluding boundaries without detailed object models. We show how our image model improves tracking in cluttered scenes, and describe how a fine-grained image-segmentation mask is created directly from the local image measurements used for tracking.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"50 1","pages":"232-238 Vol. 2"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Dynamic occluding contours: a new external-energy term for snakes\",\"authors\":\"M. Covell, Trevor Darrell\",\"doi\":\"10.1109/CVPR.1999.784635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic contours, or snakes, provide an effective method for tracking complex moving objects for segmentation and recognition tasks, but have difficulty tracking occluding boundaries on cluttered backgrounds. To compensate for this shortcoming, dynamic contours often rely on detailed object-shape or motion models to distinguish between the boundary of the tracked object and other boundaries in the background. In this paper we present a complementary approach to detailed object models: We improve the discriminative power of the local image measurements that drive the tracking process. We describe a new, robust external-energy term for dynamic contours that can track occluding boundaries without detailed object models. We show how our image model improves tracking in cluttered scenes, and describe how a fine-grained image-segmentation mask is created directly from the local image measurements used for tracking.\",\"PeriodicalId\":20644,\"journal\":{\"name\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"volume\":\"50 1\",\"pages\":\"232-238 Vol. 2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1999.784635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.784635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

动态轮廓或蛇为跟踪复杂的运动物体提供了一种有效的方法,用于分割和识别任务,但在混乱背景上难以跟踪遮挡的边界。为了弥补这一缺陷,动态轮廓通常依赖于详细的物体形状或运动模型来区分被跟踪物体的边界和背景中的其他边界。在本文中,我们提出了一种详细目标模型的补充方法:我们提高了驱动跟踪过程的局部图像测量的判别能力。我们为动态轮廓描述了一个新的、鲁棒的外部能量项,它可以在没有详细对象模型的情况下跟踪遮挡边界。我们展示了我们的图像模型如何在混乱的场景中改善跟踪,并描述了如何直接从用于跟踪的局部图像测量中创建细粒度图像分割掩码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic occluding contours: a new external-energy term for snakes
Dynamic contours, or snakes, provide an effective method for tracking complex moving objects for segmentation and recognition tasks, but have difficulty tracking occluding boundaries on cluttered backgrounds. To compensate for this shortcoming, dynamic contours often rely on detailed object-shape or motion models to distinguish between the boundary of the tracked object and other boundaries in the background. In this paper we present a complementary approach to detailed object models: We improve the discriminative power of the local image measurements that drive the tracking process. We describe a new, robust external-energy term for dynamic contours that can track occluding boundaries without detailed object models. We show how our image model improves tracking in cluttered scenes, and describe how a fine-grained image-segmentation mask is created directly from the local image measurements used for tracking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信