{"title":"基于二维有限元线性模型的轴向磁通同步磁阻电机多片分析","authors":"Gözüaçık Emre, Mustafa Eker, M. Akar","doi":"10.4283/jmag.2023.28.2.219","DOIUrl":null,"url":null,"abstract":"This study proposes a solution to improve the analysis time of the Axial Flux Synchronous Reluctance Motor (AF-SynRM) using the Finite Element Method (FEM) using the Finite Element Method (FEM). While accurate results can be achieved through 2D and 3D FEM analyses in the design of electrical machines, the analysis time becomes a significant consideration. The non-axisymmetric structure of the flux path in axial flux motors poses challenges for accurate results in 2D FEM analyses. To overcome this issue, the study uses simulation studies to convert axial flux motors into 2D linear models. In this study, a slice model approach is implemented in the linear structure, and the influence of the number of slices on various motor parameters, such as torque, torque ripple, back-EMF, loss, and efficiency, is analyzed and compared with 3D FEM analyses. Experimental loss and efficiency results are also included in these analyses. This study is the first to simulate an AF-SynRM in the 2D linear model. The accuracy of the results is verified experimentally.","PeriodicalId":16147,"journal":{"name":"Journal of Magnetics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multislice Analysis of Axial Flux Synchronous Reluctance Motor Based on 2d Finite Element Method Linear Model\",\"authors\":\"Gözüaçık Emre, Mustafa Eker, M. Akar\",\"doi\":\"10.4283/jmag.2023.28.2.219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a solution to improve the analysis time of the Axial Flux Synchronous Reluctance Motor (AF-SynRM) using the Finite Element Method (FEM) using the Finite Element Method (FEM). While accurate results can be achieved through 2D and 3D FEM analyses in the design of electrical machines, the analysis time becomes a significant consideration. The non-axisymmetric structure of the flux path in axial flux motors poses challenges for accurate results in 2D FEM analyses. To overcome this issue, the study uses simulation studies to convert axial flux motors into 2D linear models. In this study, a slice model approach is implemented in the linear structure, and the influence of the number of slices on various motor parameters, such as torque, torque ripple, back-EMF, loss, and efficiency, is analyzed and compared with 3D FEM analyses. Experimental loss and efficiency results are also included in these analyses. This study is the first to simulate an AF-SynRM in the 2D linear model. The accuracy of the results is verified experimentally.\",\"PeriodicalId\":16147,\"journal\":{\"name\":\"Journal of Magnetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnetics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.4283/jmag.2023.28.2.219\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4283/jmag.2023.28.2.219","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Multislice Analysis of Axial Flux Synchronous Reluctance Motor Based on 2d Finite Element Method Linear Model
This study proposes a solution to improve the analysis time of the Axial Flux Synchronous Reluctance Motor (AF-SynRM) using the Finite Element Method (FEM) using the Finite Element Method (FEM). While accurate results can be achieved through 2D and 3D FEM analyses in the design of electrical machines, the analysis time becomes a significant consideration. The non-axisymmetric structure of the flux path in axial flux motors poses challenges for accurate results in 2D FEM analyses. To overcome this issue, the study uses simulation studies to convert axial flux motors into 2D linear models. In this study, a slice model approach is implemented in the linear structure, and the influence of the number of slices on various motor parameters, such as torque, torque ripple, back-EMF, loss, and efficiency, is analyzed and compared with 3D FEM analyses. Experimental loss and efficiency results are also included in these analyses. This study is the first to simulate an AF-SynRM in the 2D linear model. The accuracy of the results is verified experimentally.
期刊介绍:
The JOURNAL OF MAGNETICS provides a forum for the discussion of original papers covering the magnetic theory, magnetic materials and their properties, magnetic recording materials and technology, spin electronics, and measurements and applications. The journal covers research papers, review letters, and notes.