Javier García-Alba, Javier F. Bárcena, Luis Pedraz, Felipe Fernández, Andrés García, Marcos Mecías, Javier Costas-Veigas, M. L. Samano, D. Szpilman
{"title":"SOSeas Web App:一个基于网络的决策支持评估工具,使用深度神经网络预测海滩上溺水的动态风险","authors":"Javier García-Alba, Javier F. Bárcena, Luis Pedraz, Felipe Fernández, Andrés García, Marcos Mecías, Javier Costas-Veigas, M. L. Samano, D. Szpilman","doi":"10.1080/1755876X.2021.1999107","DOIUrl":null,"url":null,"abstract":"ABSTRACT People still drown on beaches in unacceptable numbers due to the lack of knowledge about the risks taking place in them. The proposed methodology forecasts electronic bathing flags in beaches by integrating the benefits of metocean operational systems, machine learning and web-based decision support technologies into a 24/7 risk assessment service that could be easily implemented at any beach worldwide with low costs of maintenance. Firstly, a crosscutting analysis between metocean conditions, beach characteristics and flag records was performed. Secondly, an expert system, based on Deep Learning, was developed to obtain electronic bathing flags as an indicator of the dynamic risk of drowning on beaches. The input variables of the Deep Neural Network were significant wave height, mean wave period, wind velocity, marine current velocity, incidence angle, and beach modal state. Finally, the application of the method to the Santa Catarina’s beaches (Brazil) conveniently reproduced the status flag of beaches.","PeriodicalId":50105,"journal":{"name":"Journal of Operational Oceanography","volume":"1 1","pages":"155 - 174"},"PeriodicalIF":1.7000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"SOSeas Web App: An assessment web-based decision support tool to predict dynamic risk of drowning on beaches using deep neural networks\",\"authors\":\"Javier García-Alba, Javier F. Bárcena, Luis Pedraz, Felipe Fernández, Andrés García, Marcos Mecías, Javier Costas-Veigas, M. L. Samano, D. Szpilman\",\"doi\":\"10.1080/1755876X.2021.1999107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT People still drown on beaches in unacceptable numbers due to the lack of knowledge about the risks taking place in them. The proposed methodology forecasts electronic bathing flags in beaches by integrating the benefits of metocean operational systems, machine learning and web-based decision support technologies into a 24/7 risk assessment service that could be easily implemented at any beach worldwide with low costs of maintenance. Firstly, a crosscutting analysis between metocean conditions, beach characteristics and flag records was performed. Secondly, an expert system, based on Deep Learning, was developed to obtain electronic bathing flags as an indicator of the dynamic risk of drowning on beaches. The input variables of the Deep Neural Network were significant wave height, mean wave period, wind velocity, marine current velocity, incidence angle, and beach modal state. Finally, the application of the method to the Santa Catarina’s beaches (Brazil) conveniently reproduced the status flag of beaches.\",\"PeriodicalId\":50105,\"journal\":{\"name\":\"Journal of Operational Oceanography\",\"volume\":\"1 1\",\"pages\":\"155 - 174\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Operational Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/1755876X.2021.1999107\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operational Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/1755876X.2021.1999107","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
SOSeas Web App: An assessment web-based decision support tool to predict dynamic risk of drowning on beaches using deep neural networks
ABSTRACT People still drown on beaches in unacceptable numbers due to the lack of knowledge about the risks taking place in them. The proposed methodology forecasts electronic bathing flags in beaches by integrating the benefits of metocean operational systems, machine learning and web-based decision support technologies into a 24/7 risk assessment service that could be easily implemented at any beach worldwide with low costs of maintenance. Firstly, a crosscutting analysis between metocean conditions, beach characteristics and flag records was performed. Secondly, an expert system, based on Deep Learning, was developed to obtain electronic bathing flags as an indicator of the dynamic risk of drowning on beaches. The input variables of the Deep Neural Network were significant wave height, mean wave period, wind velocity, marine current velocity, incidence angle, and beach modal state. Finally, the application of the method to the Santa Catarina’s beaches (Brazil) conveniently reproduced the status flag of beaches.
期刊介绍:
The Journal of Operational Oceanography will publish papers which examine the role of oceanography in contributing to the fields of: Numerical Weather Prediction; Development of Climatologies; Implications of Ocean Change; Ocean and Climate Forecasting; Ocean Observing Technologies; Eutrophication; Climate Assessment; Shoreline Change; Marine and Sea State Prediction; Model Development and Validation; Coastal Flooding; Reducing Public Health Risks; Short-Range Ocean Forecasting; Forces on Structures; Ocean Policy; Protecting and Restoring Ecosystem health; Controlling and Mitigating Natural Hazards; Safe and Efficient Marine Operations