{"title":"平衡问题的一种新的分裂算法及其应用","authors":"T. N. Hai, N. T. Thuong","doi":"10.24193/subbmath.2022.1.09","DOIUrl":null,"url":null,"abstract":"\"In this paper, we discuss a new splitting algorithm for solving equilibrium problems arising from Nash-Cournot oligopolistic equilibrium problems in electricity markets with non-convex cost functions. Under the strong pseudomonotonicity of the original bifunction and suitable conditions of the component bifunctions, we prove the strong convergence of the proposed algorithm. Our results improve and develop previously discussed extragradient-like splitting algorithms and general extragradient algorithms. We also present some numerical experiments and compare our algorithm with the existing ones.\"","PeriodicalId":30022,"journal":{"name":"Studia Universitatis BabesBolyai Geologia","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new splitting algorithm for equilibrium problems and applications\",\"authors\":\"T. N. Hai, N. T. Thuong\",\"doi\":\"10.24193/subbmath.2022.1.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"In this paper, we discuss a new splitting algorithm for solving equilibrium problems arising from Nash-Cournot oligopolistic equilibrium problems in electricity markets with non-convex cost functions. Under the strong pseudomonotonicity of the original bifunction and suitable conditions of the component bifunctions, we prove the strong convergence of the proposed algorithm. Our results improve and develop previously discussed extragradient-like splitting algorithms and general extragradient algorithms. We also present some numerical experiments and compare our algorithm with the existing ones.\\\"\",\"PeriodicalId\":30022,\"journal\":{\"name\":\"Studia Universitatis BabesBolyai Geologia\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Universitatis BabesBolyai Geologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/subbmath.2022.1.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis BabesBolyai Geologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2022.1.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new splitting algorithm for equilibrium problems and applications
"In this paper, we discuss a new splitting algorithm for solving equilibrium problems arising from Nash-Cournot oligopolistic equilibrium problems in electricity markets with non-convex cost functions. Under the strong pseudomonotonicity of the original bifunction and suitable conditions of the component bifunctions, we prove the strong convergence of the proposed algorithm. Our results improve and develop previously discussed extragradient-like splitting algorithms and general extragradient algorithms. We also present some numerical experiments and compare our algorithm with the existing ones."