关于可证明性新概念的克瑞塞尔猜想的变体

P. G. Santos, R. Kahle
{"title":"关于可证明性新概念的克瑞塞尔猜想的变体","authors":"P. G. Santos, R. Kahle","doi":"10.1017/bsl.2021.68","DOIUrl":null,"url":null,"abstract":"Abstract Kreisel’s conjecture is the statement: if, for all \n$n\\in \\mathbb {N}$\n , \n$\\mathop {\\text {PA}} \\nolimits \\vdash _{k \\text { steps}} \\varphi (\\overline {n})$\n , then \n$\\mathop {\\text {PA}} \\nolimits \\vdash \\forall x.\\varphi (x)$\n . For a theory of arithmetic T, given a recursive function h, \n$T \\vdash _{\\leq h} \\varphi $\n holds if there is a proof of \n$\\varphi $\n in T whose code is at most \n$h(\\#\\varphi )$\n . This notion depends on the underlying coding. \n${P}^h_T(x)$\n is a predicate for \n$\\vdash _{\\leq h}$\n in T. It is shown that there exist a sentence \n$\\varphi $\n and a total recursive function h such that \n$T\\vdash _{\\leq h}\\mathop {\\text {Pr}} \\nolimits _T(\\ulcorner \\mathop {\\text {Pr}} \\nolimits _T(\\ulcorner \\varphi \\urcorner )\\rightarrow \\varphi \\urcorner )$\n , but , where \n$\\mathop {\\text {Pr}} \\nolimits _T$\n stands for the standard provability predicate in T. This statement is related to a conjecture by Montagna. Also variants and weakenings of Kreisel’s conjecture are studied. By the use of reflexion principles, one can obtain a theory \n$T^h_\\Gamma $\n that extends T such that a version of Kreisel’s conjecture holds: given a recursive function h and \n$\\varphi (x)$\n a \n$\\Gamma $\n -formula (where \n$\\Gamma $\n is an arbitrarily fixed class of formulas) such that, for all \n$n\\in \\mathbb {N}$\n , \n$T\\vdash _{\\leq h} \\varphi (\\overline {n})$\n , then \n$T^h_\\Gamma \\vdash \\forall x.\\varphi (x)$\n . Derivability conditions are studied for a theory to satisfy the following implication: if , then \n$T\\vdash \\forall x.\\varphi (x)$\n . This corresponds to an arithmetization of Kreisel’s conjecture. It is shown that, for certain theories, there exists a function h such that \n$\\vdash _{k \\text { steps}}\\ \\subseteq\\ \\vdash _{\\leq h}$\n .","PeriodicalId":22265,"journal":{"name":"The Bulletin of Symbolic Logic","volume":"29 1","pages":"337 - 350"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VARIANTS OF KREISEL’S CONJECTURE ON A NEW NOTION OF PROVABILITY\",\"authors\":\"P. G. Santos, R. Kahle\",\"doi\":\"10.1017/bsl.2021.68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Kreisel’s conjecture is the statement: if, for all \\n$n\\\\in \\\\mathbb {N}$\\n , \\n$\\\\mathop {\\\\text {PA}} \\\\nolimits \\\\vdash _{k \\\\text { steps}} \\\\varphi (\\\\overline {n})$\\n , then \\n$\\\\mathop {\\\\text {PA}} \\\\nolimits \\\\vdash \\\\forall x.\\\\varphi (x)$\\n . For a theory of arithmetic T, given a recursive function h, \\n$T \\\\vdash _{\\\\leq h} \\\\varphi $\\n holds if there is a proof of \\n$\\\\varphi $\\n in T whose code is at most \\n$h(\\\\#\\\\varphi )$\\n . This notion depends on the underlying coding. \\n${P}^h_T(x)$\\n is a predicate for \\n$\\\\vdash _{\\\\leq h}$\\n in T. It is shown that there exist a sentence \\n$\\\\varphi $\\n and a total recursive function h such that \\n$T\\\\vdash _{\\\\leq h}\\\\mathop {\\\\text {Pr}} \\\\nolimits _T(\\\\ulcorner \\\\mathop {\\\\text {Pr}} \\\\nolimits _T(\\\\ulcorner \\\\varphi \\\\urcorner )\\\\rightarrow \\\\varphi \\\\urcorner )$\\n , but , where \\n$\\\\mathop {\\\\text {Pr}} \\\\nolimits _T$\\n stands for the standard provability predicate in T. This statement is related to a conjecture by Montagna. Also variants and weakenings of Kreisel’s conjecture are studied. By the use of reflexion principles, one can obtain a theory \\n$T^h_\\\\Gamma $\\n that extends T such that a version of Kreisel’s conjecture holds: given a recursive function h and \\n$\\\\varphi (x)$\\n a \\n$\\\\Gamma $\\n -formula (where \\n$\\\\Gamma $\\n is an arbitrarily fixed class of formulas) such that, for all \\n$n\\\\in \\\\mathbb {N}$\\n , \\n$T\\\\vdash _{\\\\leq h} \\\\varphi (\\\\overline {n})$\\n , then \\n$T^h_\\\\Gamma \\\\vdash \\\\forall x.\\\\varphi (x)$\\n . Derivability conditions are studied for a theory to satisfy the following implication: if , then \\n$T\\\\vdash \\\\forall x.\\\\varphi (x)$\\n . This corresponds to an arithmetization of Kreisel’s conjecture. It is shown that, for certain theories, there exists a function h such that \\n$\\\\vdash _{k \\\\text { steps}}\\\\ \\\\subseteq\\\\ \\\\vdash _{\\\\leq h}$\\n .\",\"PeriodicalId\":22265,\"journal\":{\"name\":\"The Bulletin of Symbolic Logic\",\"volume\":\"29 1\",\"pages\":\"337 - 350\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Bulletin of Symbolic Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/bsl.2021.68\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Bulletin of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/bsl.2021.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Kreisel猜想是这样的陈述:如果,对于所有$n\in \mathbb {N}$, $\mathop {\text {PA}} \nolimits \vdash _{k \text { steps}} \varphi (\overline {n})$,那么$\mathop {\text {PA}} \nolimits \vdash \forall x.\varphi (x)$。对于算术T的理论,给定递归函数h,如果T中存在$\varphi $的证明,其代码最多为$h(\#\varphi )$,则$T \vdash _{\leq h} \varphi $成立。这个概念依赖于底层编码。${P}^h_T(x)$是t中$\vdash _{\leq h}$的一个谓词,证明存在一个句子$\varphi $和一个总递归函数h,使得$T\vdash _{\leq h}\mathop {\text {Pr}} \nolimits _T(\ulcorner \mathop {\text {Pr}} \nolimits _T(\ulcorner \varphi \urcorner )\rightarrow \varphi \urcorner )$,但是,其中$\mathop {\text {Pr}} \nolimits _T$代表t中的标准可证明性谓词。这个命题与Montagna的一个猜想有关。本文还研究了Kreisel猜想的变体和弱化。通过使用反射原理,我们可以得到一个理论$T^h_\Gamma $,它扩展了T,使得Kreisel猜想的一个版本成立:给定一个递归函数h和$\varphi (x)$一个$\Gamma $ -公式(其中$\Gamma $是一个任意固定的公式类),对于所有$n\in \mathbb {N}$, $T\vdash _{\leq h} \varphi (\overline {n})$,然后$T^h_\Gamma \vdash \forall x.\varphi (x)$。研究了一个理论的可导性条件,以满足以下蕴涵:如果,则$T\vdash \forall x.\varphi (x)$。这相当于克瑞塞尔猜想的一个算术化。结果表明,对于某些理论,存在一个函数h使得$\vdash _{k \text { steps}}\ \subseteq\ \vdash _{\leq h}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VARIANTS OF KREISEL’S CONJECTURE ON A NEW NOTION OF PROVABILITY
Abstract Kreisel’s conjecture is the statement: if, for all $n\in \mathbb {N}$ , $\mathop {\text {PA}} \nolimits \vdash _{k \text { steps}} \varphi (\overline {n})$ , then $\mathop {\text {PA}} \nolimits \vdash \forall x.\varphi (x)$ . For a theory of arithmetic T, given a recursive function h, $T \vdash _{\leq h} \varphi $ holds if there is a proof of $\varphi $ in T whose code is at most $h(\#\varphi )$ . This notion depends on the underlying coding. ${P}^h_T(x)$ is a predicate for $\vdash _{\leq h}$ in T. It is shown that there exist a sentence $\varphi $ and a total recursive function h such that $T\vdash _{\leq h}\mathop {\text {Pr}} \nolimits _T(\ulcorner \mathop {\text {Pr}} \nolimits _T(\ulcorner \varphi \urcorner )\rightarrow \varphi \urcorner )$ , but , where $\mathop {\text {Pr}} \nolimits _T$ stands for the standard provability predicate in T. This statement is related to a conjecture by Montagna. Also variants and weakenings of Kreisel’s conjecture are studied. By the use of reflexion principles, one can obtain a theory $T^h_\Gamma $ that extends T such that a version of Kreisel’s conjecture holds: given a recursive function h and $\varphi (x)$ a $\Gamma $ -formula (where $\Gamma $ is an arbitrarily fixed class of formulas) such that, for all $n\in \mathbb {N}$ , $T\vdash _{\leq h} \varphi (\overline {n})$ , then $T^h_\Gamma \vdash \forall x.\varphi (x)$ . Derivability conditions are studied for a theory to satisfy the following implication: if , then $T\vdash \forall x.\varphi (x)$ . This corresponds to an arithmetization of Kreisel’s conjecture. It is shown that, for certain theories, there exists a function h such that $\vdash _{k \text { steps}}\ \subseteq\ \vdash _{\leq h}$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信