动作-辅助动作识别

Ye Luo, L. Cheong, An Tran
{"title":"动作-辅助动作识别","authors":"Ye Luo, L. Cheong, An Tran","doi":"10.1109/ICCV.2015.371","DOIUrl":null,"url":null,"abstract":"We elicit from a fundamental definition of action low-level attributes that can reveal agency and intentionality. These descriptors are mainly trajectory-based, measuring sudden changes, temporal synchrony, and repetitiveness. The actionness map can be used to localize actions in a way that is generic across action and agent types. Furthermore, it also groups interacting regions into a useful unit of analysis, which is crucial for recognition of actions involving interactions. We then implement an actionness-driven pooling scheme to improve action recognition performance. Experimental results on three datasets show the advantages of our method on both action detection and action recognition comparing with other state-of-the-art methods.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"20 1","pages":"3244-3252"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Actionness-Assisted Recognition of Actions\",\"authors\":\"Ye Luo, L. Cheong, An Tran\",\"doi\":\"10.1109/ICCV.2015.371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We elicit from a fundamental definition of action low-level attributes that can reveal agency and intentionality. These descriptors are mainly trajectory-based, measuring sudden changes, temporal synchrony, and repetitiveness. The actionness map can be used to localize actions in a way that is generic across action and agent types. Furthermore, it also groups interacting regions into a useful unit of analysis, which is crucial for recognition of actions involving interactions. We then implement an actionness-driven pooling scheme to improve action recognition performance. Experimental results on three datasets show the advantages of our method on both action detection and action recognition comparing with other state-of-the-art methods.\",\"PeriodicalId\":6633,\"journal\":{\"name\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"20 1\",\"pages\":\"3244-3252\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2015.371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们从行为的基本定义中推导出可以揭示能动性和意向性的低级属性。这些描述符主要是基于轨迹的,测量突然变化、时间同步性和重复性。动作性图可用于以跨动作和代理类型通用的方式对动作进行本地化。此外,它还将相互作用的区域分组为一个有用的分析单元,这对于识别涉及相互作用的行为至关重要。然后,我们实现了一个动作驱动的池化方案来提高动作识别性能。在三个数据集上的实验结果表明,该方法在动作检测和动作识别方面都优于其他先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Actionness-Assisted Recognition of Actions
We elicit from a fundamental definition of action low-level attributes that can reveal agency and intentionality. These descriptors are mainly trajectory-based, measuring sudden changes, temporal synchrony, and repetitiveness. The actionness map can be used to localize actions in a way that is generic across action and agent types. Furthermore, it also groups interacting regions into a useful unit of analysis, which is crucial for recognition of actions involving interactions. We then implement an actionness-driven pooling scheme to improve action recognition performance. Experimental results on three datasets show the advantages of our method on both action detection and action recognition comparing with other state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信