fe2o3 -Ag纳米颗粒双金属合金:表征和结构建模

Á. Ruíz-Baltazar, R. Esparza, J. L. López-Miranda, G. Rosas, R. Pérez
{"title":"fe2o3 -Ag纳米颗粒双金属合金:表征和结构建模","authors":"Á. Ruíz-Baltazar, R. Esparza, J. L. López-Miranda, G. Rosas, R. Pérez","doi":"10.1557/OPL.2016.61","DOIUrl":null,"url":null,"abstract":"The synthesis of Fe 3 O 4 -Ag bimetallic nanoparticles by chemical reduction was carried out. Fe nanoparticles were obtained using Fe (III) Chloride hexahydrate (FeCl 3 •6H 2 O) as precursor and sodium borohydride (NaBH 4 ) as reducing agent, subsequently, a solution of silver nitrate (AgNO 3 ) was added to the reaction. The synthesis methodology employed in this case, is a modification of chemical reduction method. Through this procedure has been possible simplify the synthesis route used to obtain bimetallic systems such as Fe 3 O 4 -Ag. Particles with semi-spherical morphology were observed. High-resolution transmission electron microscopy (HREM), ultraviolet visible spectroscopy (UV-is) and quasi-elastic light scattering (QELS) techniques were employed for the structural characterization of Fe 3 O 4 -Ag nanostructures. Some models presented describe and prove the formation of the Fe 3 O 4 -Ag alloy type structures.","PeriodicalId":18884,"journal":{"name":"MRS Proceedings","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bimetallic Alloy of Fe 2 O 3 -Ag Nanoparticles: Characterization and Structural Modeling\",\"authors\":\"Á. Ruíz-Baltazar, R. Esparza, J. L. López-Miranda, G. Rosas, R. Pérez\",\"doi\":\"10.1557/OPL.2016.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The synthesis of Fe 3 O 4 -Ag bimetallic nanoparticles by chemical reduction was carried out. Fe nanoparticles were obtained using Fe (III) Chloride hexahydrate (FeCl 3 •6H 2 O) as precursor and sodium borohydride (NaBH 4 ) as reducing agent, subsequently, a solution of silver nitrate (AgNO 3 ) was added to the reaction. The synthesis methodology employed in this case, is a modification of chemical reduction method. Through this procedure has been possible simplify the synthesis route used to obtain bimetallic systems such as Fe 3 O 4 -Ag. Particles with semi-spherical morphology were observed. High-resolution transmission electron microscopy (HREM), ultraviolet visible spectroscopy (UV-is) and quasi-elastic light scattering (QELS) techniques were employed for the structural characterization of Fe 3 O 4 -Ag nanostructures. Some models presented describe and prove the formation of the Fe 3 O 4 -Ag alloy type structures.\",\"PeriodicalId\":18884,\"journal\":{\"name\":\"MRS Proceedings\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MRS Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1557/OPL.2016.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1557/OPL.2016.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用化学还原法制备了fe2o3 -Ag双金属纳米颗粒。以六水氯化铁(FeCl 3•6h2o)为前驱体,硼氢化钠(NaBH 4)为还原剂,加入硝酸银(AgNO 3)溶液,制备了铁纳米颗粒。本案例中采用的合成方法是化学还原法的一种改进。通过这一过程已有可能简化合成路线,用于获得双金属体系如fe3o4 -Ag。观察到半球形颗粒。采用高分辨率透射电子显微镜(HREM)、紫外可见光谱(UV-is)和准弹性光散射(QELS)技术对fe3o4 -Ag纳米结构进行了结构表征。提出了一些模型来描述和证明fe3o4 -Ag合金型组织的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bimetallic Alloy of Fe 2 O 3 -Ag Nanoparticles: Characterization and Structural Modeling
The synthesis of Fe 3 O 4 -Ag bimetallic nanoparticles by chemical reduction was carried out. Fe nanoparticles were obtained using Fe (III) Chloride hexahydrate (FeCl 3 •6H 2 O) as precursor and sodium borohydride (NaBH 4 ) as reducing agent, subsequently, a solution of silver nitrate (AgNO 3 ) was added to the reaction. The synthesis methodology employed in this case, is a modification of chemical reduction method. Through this procedure has been possible simplify the synthesis route used to obtain bimetallic systems such as Fe 3 O 4 -Ag. Particles with semi-spherical morphology were observed. High-resolution transmission electron microscopy (HREM), ultraviolet visible spectroscopy (UV-is) and quasi-elastic light scattering (QELS) techniques were employed for the structural characterization of Fe 3 O 4 -Ag nanostructures. Some models presented describe and prove the formation of the Fe 3 O 4 -Ag alloy type structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信