线性判别分析及其在植物分类中的应用

Ming-yuan Du, Xianfeng Wang
{"title":"线性判别分析及其在植物分类中的应用","authors":"Ming-yuan Du, Xianfeng Wang","doi":"10.1109/ICIC.2011.147","DOIUrl":null,"url":null,"abstract":"The most common organisms on Earth are plants, which are crucial to the maintenance of atmospheric composition, nutrient cycling and other ecosystem processes. The classification of plants is vital to the study of plant genetic diversity and ecological sensitivity, which is also helpful for many problems such as feeding the population and fighting disease. In this paper, we firstly dicuss the shortages of LDA, then classify the plant by using PCA+LDA. The experiments show that it is effective and feasible for plant classification.","PeriodicalId":6397,"journal":{"name":"2011 Fourth International Conference on Information and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Linear Discriminant Analysis and Its Application in Plant Classification\",\"authors\":\"Ming-yuan Du, Xianfeng Wang\",\"doi\":\"10.1109/ICIC.2011.147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most common organisms on Earth are plants, which are crucial to the maintenance of atmospheric composition, nutrient cycling and other ecosystem processes. The classification of plants is vital to the study of plant genetic diversity and ecological sensitivity, which is also helpful for many problems such as feeding the population and fighting disease. In this paper, we firstly dicuss the shortages of LDA, then classify the plant by using PCA+LDA. The experiments show that it is effective and feasible for plant classification.\",\"PeriodicalId\":6397,\"journal\":{\"name\":\"2011 Fourth International Conference on Information and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Conference on Information and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIC.2011.147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Conference on Information and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIC.2011.147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

地球上最常见的生物是植物,它们对维持大气成分、养分循环和其他生态系统过程至关重要。植物的分类是研究植物遗传多样性和生态敏感性的重要内容,对解决种群的喂养和抗病等问题具有重要意义。本文首先讨论了LDA的不足,然后利用PCA+LDA对植物进行分类。实验表明,该方法对植物分类是有效可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear Discriminant Analysis and Its Application in Plant Classification
The most common organisms on Earth are plants, which are crucial to the maintenance of atmospheric composition, nutrient cycling and other ecosystem processes. The classification of plants is vital to the study of plant genetic diversity and ecological sensitivity, which is also helpful for many problems such as feeding the population and fighting disease. In this paper, we firstly dicuss the shortages of LDA, then classify the plant by using PCA+LDA. The experiments show that it is effective and feasible for plant classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信