为能源转型调整现有的定量风险评估工具

M. Horn, Tara Franey, Jeremy Fontenault
{"title":"为能源转型调整现有的定量风险评估工具","authors":"M. Horn, Tara Franey, Jeremy Fontenault","doi":"10.1115/ipc2022-84761","DOIUrl":null,"url":null,"abstract":"\n The energy transition from fossil fuels to renewable or cleaner energy sources is upon us. There is also a global focus on reducing atmospheric carbon dioxide emissions. Several major companies are placing an emphasis on solutions such as hydrogen and carbon capture and sequestration or reuse. While this will provide new business opportunities for the pipeline industry, there are inherent risks, especially as they are scaled up to meet societal demand. Therefore, there is a need to assess the potential for harm to people and the environment.\n Hydrogen is a flammable gas with the potential for both fire and explosion. Carbon dioxide is an asphyxiant at high concentrations and can dissolve in water, having unintended environmental effects. Traditional oil dispersion models have been used by the oil and gas sector and pipeline industry for decades to investigate overland, downstream, and in water movement, behavior, and potential effects of hypothetical and real-world releases. Atmospheric dispersion models have been used to assess vapor transport, resulting potential impacts (e.g., asphyxiation and or toxic effects) to humans and the environment, and risk of fire and explosion.\n Based upon our experience with the current regulatory environment, the scrutiny placed upon operators by regulators and intervenors (especially with other products such as oil), and the large amount of time required to plan, permit, construct, and operate pipelines, we believe these comprehensive and quantitative assessments will be at the forefront of decision making. The use and potential adaptation of these existing modeling tools will be crucial in assessing risk from transport, storage, and use to ensure safety of each project through all phases of its life cycle (e.g., prior to permitting, construction, operation, and decommissioning) during this energy transition.","PeriodicalId":21327,"journal":{"name":"Risk Management","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adapting Existing Quantitative Risk Assessment Tools for the Energy Transition\",\"authors\":\"M. Horn, Tara Franey, Jeremy Fontenault\",\"doi\":\"10.1115/ipc2022-84761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The energy transition from fossil fuels to renewable or cleaner energy sources is upon us. There is also a global focus on reducing atmospheric carbon dioxide emissions. Several major companies are placing an emphasis on solutions such as hydrogen and carbon capture and sequestration or reuse. While this will provide new business opportunities for the pipeline industry, there are inherent risks, especially as they are scaled up to meet societal demand. Therefore, there is a need to assess the potential for harm to people and the environment.\\n Hydrogen is a flammable gas with the potential for both fire and explosion. Carbon dioxide is an asphyxiant at high concentrations and can dissolve in water, having unintended environmental effects. Traditional oil dispersion models have been used by the oil and gas sector and pipeline industry for decades to investigate overland, downstream, and in water movement, behavior, and potential effects of hypothetical and real-world releases. Atmospheric dispersion models have been used to assess vapor transport, resulting potential impacts (e.g., asphyxiation and or toxic effects) to humans and the environment, and risk of fire and explosion.\\n Based upon our experience with the current regulatory environment, the scrutiny placed upon operators by regulators and intervenors (especially with other products such as oil), and the large amount of time required to plan, permit, construct, and operate pipelines, we believe these comprehensive and quantitative assessments will be at the forefront of decision making. The use and potential adaptation of these existing modeling tools will be crucial in assessing risk from transport, storage, and use to ensure safety of each project through all phases of its life cycle (e.g., prior to permitting, construction, operation, and decommissioning) during this energy transition.\",\"PeriodicalId\":21327,\"journal\":{\"name\":\"Risk Management\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Risk Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ipc2022-84761\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ipc2022-84761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从化石燃料到可再生或更清洁能源的能源转型迫在眉睫。减少大气中的二氧化碳排放也是全球关注的焦点。几家大公司正把重点放在氢和碳的捕获、封存或再利用等解决方案上。虽然这将为管道行业提供新的商业机会,但也存在固有的风险,特别是当它们扩大规模以满足社会需求时。因此,有必要评估对人类和环境的潜在危害。氢气是一种易燃气体,有着火和爆炸的危险。高浓度的二氧化碳是一种窒息剂,可以溶解在水中,对环境产生意想不到的影响。传统的石油分散模型已经被油气行业和管道行业使用了几十年,用于调查陆上、下游和水中的运动、行为以及假设和现实世界释放的潜在影响。大气扩散模式已用于评估蒸汽输送、对人类和环境造成的潜在影响(如窒息和/或毒性影响)以及火灾和爆炸的风险。根据我们对当前监管环境的经验,监管机构和干预者对运营商的审查(特别是对石油等其他产品),以及规划、许可、建设和运营管道所需的大量时间,我们相信这些全面和定量的评估将成为决策的前沿。在能源转型过程中,这些现有建模工具的使用和潜在适应性对于评估运输、储存和使用的风险至关重要,以确保每个项目在其生命周期的所有阶段(例如,在许可、建设、运营和退役之前)的安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adapting Existing Quantitative Risk Assessment Tools for the Energy Transition
The energy transition from fossil fuels to renewable or cleaner energy sources is upon us. There is also a global focus on reducing atmospheric carbon dioxide emissions. Several major companies are placing an emphasis on solutions such as hydrogen and carbon capture and sequestration or reuse. While this will provide new business opportunities for the pipeline industry, there are inherent risks, especially as they are scaled up to meet societal demand. Therefore, there is a need to assess the potential for harm to people and the environment. Hydrogen is a flammable gas with the potential for both fire and explosion. Carbon dioxide is an asphyxiant at high concentrations and can dissolve in water, having unintended environmental effects. Traditional oil dispersion models have been used by the oil and gas sector and pipeline industry for decades to investigate overland, downstream, and in water movement, behavior, and potential effects of hypothetical and real-world releases. Atmospheric dispersion models have been used to assess vapor transport, resulting potential impacts (e.g., asphyxiation and or toxic effects) to humans and the environment, and risk of fire and explosion. Based upon our experience with the current regulatory environment, the scrutiny placed upon operators by regulators and intervenors (especially with other products such as oil), and the large amount of time required to plan, permit, construct, and operate pipelines, we believe these comprehensive and quantitative assessments will be at the forefront of decision making. The use and potential adaptation of these existing modeling tools will be crucial in assessing risk from transport, storage, and use to ensure safety of each project through all phases of its life cycle (e.g., prior to permitting, construction, operation, and decommissioning) during this energy transition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信