单色子图渐近正态性的一个四矩现象

Pub Date : 2022-05-09 DOI:10.1002/rsa.21166
Sayan Das, Z. Himwich, Nitya Mani
{"title":"单色子图渐近正态性的一个四矩现象","authors":"Sayan Das, Z. Himwich, Nitya Mani","doi":"10.1002/rsa.21166","DOIUrl":null,"url":null,"abstract":"Given a graph sequence {Gn}n≥1$$ {\\left\\{{G}_n\\right\\}}_{n\\ge 1} $$ and a simple connected subgraph H$$ H $$ , we denote by T(H,Gn)$$ T\\left(H,{G}_n\\right) $$ the number of monochromatic copies of H$$ H $$ in a uniformly random vertex coloring of Gn$$ {G}_n $$ with c≥2$$ c\\ge 2 $$ colors. We prove a central limit theorem for T(H,Gn)$$ T\\left(H,{G}_n\\right) $$ (we denote the appropriately centered and rescaled statistic as Z(H,Gn)$$ Z\\left(H,{G}_n\\right) $$ ) with explicit error rates. The error rates arise from graph counts of collections formed by joining copies of H$$ H $$ which we call good joins. Good joins are closely related to the fourth moment of Z(H,Gn)$$ Z\\left(H,{G}_n\\right) $$ , which allows us to show a fourth moment phenomenon for the central limit theorem. For c≥30$$ c\\ge 30 $$ , we show that Z(H,Gn)$$ Z\\left(H,{G}_n\\right) $$ converges in distribution to 𝒩(0,1) whenever its fourth moment converges to 3. We show the convergence of the fourth moment is necessary to obtain a normal limit when c≥2$$ c\\ge 2 $$ .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fourth‐moment phenomenon for asymptotic normality of monochromatic subgraphs\",\"authors\":\"Sayan Das, Z. Himwich, Nitya Mani\",\"doi\":\"10.1002/rsa.21166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a graph sequence {Gn}n≥1$$ {\\\\left\\\\{{G}_n\\\\right\\\\}}_{n\\\\ge 1} $$ and a simple connected subgraph H$$ H $$ , we denote by T(H,Gn)$$ T\\\\left(H,{G}_n\\\\right) $$ the number of monochromatic copies of H$$ H $$ in a uniformly random vertex coloring of Gn$$ {G}_n $$ with c≥2$$ c\\\\ge 2 $$ colors. We prove a central limit theorem for T(H,Gn)$$ T\\\\left(H,{G}_n\\\\right) $$ (we denote the appropriately centered and rescaled statistic as Z(H,Gn)$$ Z\\\\left(H,{G}_n\\\\right) $$ ) with explicit error rates. The error rates arise from graph counts of collections formed by joining copies of H$$ H $$ which we call good joins. Good joins are closely related to the fourth moment of Z(H,Gn)$$ Z\\\\left(H,{G}_n\\\\right) $$ , which allows us to show a fourth moment phenomenon for the central limit theorem. For c≥30$$ c\\\\ge 30 $$ , we show that Z(H,Gn)$$ Z\\\\left(H,{G}_n\\\\right) $$ converges in distribution to 𝒩(0,1) whenever its fourth moment converges to 3. We show the convergence of the fourth moment is necessary to obtain a normal limit when c≥2$$ c\\\\ge 2 $$ .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/rsa.21166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定图序列{Gnn}≥1 $$ {\left\{{G}_n\right\}}_{n\ge 1} $$和简单连通子图H $$ H $$,我们用T(H,Gn) $$ T\left(H,{G}_n\right) $$表示在Gn $$ {G}_n $$的c≥2个$$ c\ge 2 $$颜色的均匀随机顶点着色中H $$ H $$的单色副本数。我们用显式错误率证明了T(H,Gn) $$ T\left(H,{G}_n\right) $$的中心极限定理(我们将适当居中并重新缩放的统计量表示为Z(H,Gn) $$ Z\left(H,{G}_n\right) $$)。错误率来自于通过连接H $$ H $$副本形成的集合的图计数,我们称之为良好的连接。良好的连接与Z(H,Gn) $$ Z\left(H,{G}_n\right) $$的第四矩密切相关,这使我们能够展示中心极限定理的第四矩现象。对于c≥30 $$ c\ge 30 $$,我们证明当Z(H,Gn) $$ Z\left(H,{G}_n\right) $$的第四阶矩收敛于3时,它的分布收敛于(0,1)。我们证明了当c≥2 $$ c\ge 2 $$时,第四矩的收敛性对于得到一个正规极限是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A fourth‐moment phenomenon for asymptotic normality of monochromatic subgraphs
Given a graph sequence {Gn}n≥1$$ {\left\{{G}_n\right\}}_{n\ge 1} $$ and a simple connected subgraph H$$ H $$ , we denote by T(H,Gn)$$ T\left(H,{G}_n\right) $$ the number of monochromatic copies of H$$ H $$ in a uniformly random vertex coloring of Gn$$ {G}_n $$ with c≥2$$ c\ge 2 $$ colors. We prove a central limit theorem for T(H,Gn)$$ T\left(H,{G}_n\right) $$ (we denote the appropriately centered and rescaled statistic as Z(H,Gn)$$ Z\left(H,{G}_n\right) $$ ) with explicit error rates. The error rates arise from graph counts of collections formed by joining copies of H$$ H $$ which we call good joins. Good joins are closely related to the fourth moment of Z(H,Gn)$$ Z\left(H,{G}_n\right) $$ , which allows us to show a fourth moment phenomenon for the central limit theorem. For c≥30$$ c\ge 30 $$ , we show that Z(H,Gn)$$ Z\left(H,{G}_n\right) $$ converges in distribution to 𝒩(0,1) whenever its fourth moment converges to 3. We show the convergence of the fourth moment is necessary to obtain a normal limit when c≥2$$ c\ge 2 $$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信