基于多任务深度学习的图像内容与元数据差异的元数据篡改检测

Bor-Chun Chen, P. Ghosh, Vlad I. Morariu, L. Davis
{"title":"基于多任务深度学习的图像内容与元数据差异的元数据篡改检测","authors":"Bor-Chun Chen, P. Ghosh, Vlad I. Morariu, L. Davis","doi":"10.1109/CVPRW.2017.234","DOIUrl":null,"url":null,"abstract":"Image content or metadata editing software availability and ease of use has resulted in a high demand for automatic image tamper detection algorithms. Most previous work has focused on detection of tampered image content, whereas we develop techniques to detect metadata tampering in outdoor images using sun altitude angle and other meteorological information like temperature, humidity and weather, which can be observed in most outdoor image scenes. To train and evaluate our technique, we create a large dataset of outdoor images labeled with sun altitude angle and other meteorological data (AMOS+M2), which to our knowledge, is the largest publicly available dataset of its kind. Using this dataset, we train separate regression models for sun altitude angle, temperature and humidity and a classification model for weather to detect any discrepancy between image content and its metadata. Finally, a joint multi-task network for these four features shows a relative improvement of 15.5% compared to each of them individually. We include a detailed analysis for using these networks to detect various types of modification to location and time information in image metadata.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"17 1","pages":"1872-1880"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Detection of Metadata Tampering Through Discrepancy Between Image Content and Metadata Using Multi-task Deep Learning\",\"authors\":\"Bor-Chun Chen, P. Ghosh, Vlad I. Morariu, L. Davis\",\"doi\":\"10.1109/CVPRW.2017.234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image content or metadata editing software availability and ease of use has resulted in a high demand for automatic image tamper detection algorithms. Most previous work has focused on detection of tampered image content, whereas we develop techniques to detect metadata tampering in outdoor images using sun altitude angle and other meteorological information like temperature, humidity and weather, which can be observed in most outdoor image scenes. To train and evaluate our technique, we create a large dataset of outdoor images labeled with sun altitude angle and other meteorological data (AMOS+M2), which to our knowledge, is the largest publicly available dataset of its kind. Using this dataset, we train separate regression models for sun altitude angle, temperature and humidity and a classification model for weather to detect any discrepancy between image content and its metadata. Finally, a joint multi-task network for these four features shows a relative improvement of 15.5% compared to each of them individually. We include a detailed analysis for using these networks to detect various types of modification to location and time information in image metadata.\",\"PeriodicalId\":6668,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"17 1\",\"pages\":\"1872-1880\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2017.234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

图像内容或元数据编辑软件的可用性和易用性导致了对自动图像篡改检测算法的高需求。以前的大部分工作都集中在检测篡改图像内容上,而我们开发了利用太阳高度角和其他气象信息(如温度、湿度和天气)检测室外图像元数据篡改的技术,这些信息可以在大多数室外图像场景中观察到。为了训练和评估我们的技术,我们创建了一个大型户外图像数据集,其中标记了太阳高度角和其他气象数据(AMOS+M2),据我们所知,这是同类数据集中最大的公开数据集。使用该数据集,我们训练了太阳高度角、温度和湿度的独立回归模型,以及天气的分类模型,以检测图像内容与其元数据之间的任何差异。最后,对于这四个特征的联合多任务网络,与单独使用它们相比,其相对改进率为15.5%。我们详细分析了如何使用这些网络来检测图像元数据中位置和时间信息的各种类型的修改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of Metadata Tampering Through Discrepancy Between Image Content and Metadata Using Multi-task Deep Learning
Image content or metadata editing software availability and ease of use has resulted in a high demand for automatic image tamper detection algorithms. Most previous work has focused on detection of tampered image content, whereas we develop techniques to detect metadata tampering in outdoor images using sun altitude angle and other meteorological information like temperature, humidity and weather, which can be observed in most outdoor image scenes. To train and evaluate our technique, we create a large dataset of outdoor images labeled with sun altitude angle and other meteorological data (AMOS+M2), which to our knowledge, is the largest publicly available dataset of its kind. Using this dataset, we train separate regression models for sun altitude angle, temperature and humidity and a classification model for weather to detect any discrepancy between image content and its metadata. Finally, a joint multi-task network for these four features shows a relative improvement of 15.5% compared to each of them individually. We include a detailed analysis for using these networks to detect various types of modification to location and time information in image metadata.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信