{"title":"系统生物技术的未来之路:crispr - cas介导的重组蛋白生产代谢工程","authors":"A. Roointan, Mohammad Hossein Morowvat","doi":"10.1080/02648725.2016.1270095","DOIUrl":null,"url":null,"abstract":"The rising potential for CRISPR–Cas-mediated genome editing has revolutionized our strategies in basic and practical bioengineering research. It provides a predictable and precise method for genome modification in a robust and reproducible fashion. Emergence of systems biotechnology and synthetic biology approaches coupled with CRISPR–Cas technology could change the future of cell factories to possess some new features which have not been found naturally. We have discussed the possibility and versatile potentials of CRISPR–Cas technology for metabolic engineering of a recombinant host for heterologous protein production. We describe the mechanisms involved in this metabolic engineering approach and present the diverse features of its application in biotechnology and protein production.","PeriodicalId":8931,"journal":{"name":"Biotechnology and Genetic Engineering Reviews","volume":"60 1","pages":"74 - 91"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Road to the future of systems biotechnology: CRISPR-Cas-mediated metabolic engineering for recombinant protein production\",\"authors\":\"A. Roointan, Mohammad Hossein Morowvat\",\"doi\":\"10.1080/02648725.2016.1270095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rising potential for CRISPR–Cas-mediated genome editing has revolutionized our strategies in basic and practical bioengineering research. It provides a predictable and precise method for genome modification in a robust and reproducible fashion. Emergence of systems biotechnology and synthetic biology approaches coupled with CRISPR–Cas technology could change the future of cell factories to possess some new features which have not been found naturally. We have discussed the possibility and versatile potentials of CRISPR–Cas technology for metabolic engineering of a recombinant host for heterologous protein production. We describe the mechanisms involved in this metabolic engineering approach and present the diverse features of its application in biotechnology and protein production.\",\"PeriodicalId\":8931,\"journal\":{\"name\":\"Biotechnology and Genetic Engineering Reviews\",\"volume\":\"60 1\",\"pages\":\"74 - 91\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and Genetic Engineering Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02648725.2016.1270095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Genetic Engineering Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02648725.2016.1270095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Road to the future of systems biotechnology: CRISPR-Cas-mediated metabolic engineering for recombinant protein production
The rising potential for CRISPR–Cas-mediated genome editing has revolutionized our strategies in basic and practical bioengineering research. It provides a predictable and precise method for genome modification in a robust and reproducible fashion. Emergence of systems biotechnology and synthetic biology approaches coupled with CRISPR–Cas technology could change the future of cell factories to possess some new features which have not been found naturally. We have discussed the possibility and versatile potentials of CRISPR–Cas technology for metabolic engineering of a recombinant host for heterologous protein production. We describe the mechanisms involved in this metabolic engineering approach and present the diverse features of its application in biotechnology and protein production.