广义拉普拉斯变换和调质后的ψ-卡普托分数阶导数

IF 1.6 3区 数学 Q1 MATHEMATICS
M. Medved', M. Pospíšil
{"title":"广义拉普拉斯变换和调质后的ψ-卡普托分数阶导数","authors":"M. Medved', M. Pospíšil","doi":"10.3846/mma.2023.16370","DOIUrl":null,"url":null,"abstract":"In this paper, images of the tempered Ψ-Hilfer fractional integral and the tempered Ψ-Caputo fractional derivative under the generalized Laplace transform are derived. The results are applied to find a solution to an initial value problem for a nonhomogeneous linear fractional differential equation with the tempered Ψ-Caputo fractional derivative of an order α for n− 1 <α<n N. An illustrative example is given for 0 <α<1 comparing solutions to the same initial value problem but with different tempering and Ψ.","PeriodicalId":49861,"journal":{"name":"Mathematical Modelling and Analysis","volume":"21 1","pages":"146-162"},"PeriodicalIF":1.6000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Generalized Laplace transform and tempered ψ-Caputo fractional derivative\",\"authors\":\"M. Medved', M. Pospíšil\",\"doi\":\"10.3846/mma.2023.16370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, images of the tempered Ψ-Hilfer fractional integral and the tempered Ψ-Caputo fractional derivative under the generalized Laplace transform are derived. The results are applied to find a solution to an initial value problem for a nonhomogeneous linear fractional differential equation with the tempered Ψ-Caputo fractional derivative of an order α for n− 1 <α<n N. An illustrative example is given for 0 <α<1 comparing solutions to the same initial value problem but with different tempering and Ψ.\",\"PeriodicalId\":49861,\"journal\":{\"name\":\"Mathematical Modelling and Analysis\",\"volume\":\"21 1\",\"pages\":\"146-162\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3846/mma.2023.16370\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2023.16370","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

本文导出了广义拉普拉斯变换下的回火Ψ-Hilfer分数阶积分和回火Ψ-Caputo分数阶导数的图像。应用所得结果,求出了一个非齐次线性分数阶微分方程初值问题的解,该初值问题为:对于n−1 <α本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Generalized Laplace transform and tempered ψ-Caputo fractional derivative
In this paper, images of the tempered Ψ-Hilfer fractional integral and the tempered Ψ-Caputo fractional derivative under the generalized Laplace transform are derived. The results are applied to find a solution to an initial value problem for a nonhomogeneous linear fractional differential equation with the tempered Ψ-Caputo fractional derivative of an order α for n− 1 <α
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
5.60%
发文量
28
审稿时长
4.5 months
期刊介绍: Mathematical Modelling and Analysis publishes original research on all areas of mathematical modelling and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信