{"title":"微波和热超声真空浓缩法对芙蓉提取物质量参数的影响及浓度数学建模","authors":"Cuneyt Dincer, Timur Tongur, T. Erkaymaz","doi":"10.1080/08327823.2023.2235549","DOIUrl":null,"url":null,"abstract":"Abstract This study investigates the modeling of the concentration of hibiscus extracts and the effect of the concentration process on some quality properties of hibiscus extracts. Absolute pressure was applied as 250 mbar in all concentration processes. Thermal vacuum concentration process was applied at 75 °C and 80 °C, thermosonic vacuum concentration process was applied at 75 °C and 0.02 W/mL AED, and microwave vacuum concentration treatment was applied at 180 and 300 W. The shortest processing time was achieved with the microwave vacuum concentration process at 300 W. Among the 13 models used, Midilli was the most successful model (R 2 ≥ 0.9951, χ2 ≤ 1.0185 and RMSE ≤ 1.0092)) in describing the concentration data. No significant change was determined in the physicochemical properties of the concentrated samples. However, a significant increase was determined in the turbidity values of the concentrated hibiscus samples, while a significant decrease was noted in the anthocyanin content and composition and antioxidant activity values of the concentrated samples compared to the initial sample.","PeriodicalId":16556,"journal":{"name":"Journal of Microwave Power and Electromagnetic Energy","volume":"82 1","pages":"163 - 177"},"PeriodicalIF":0.9000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of the microwave and thermosonic vacuum concentration methods on quality parameters of hibiscus (hibiscus sabdariffa L.) extract and mathematical modeling of concentration\",\"authors\":\"Cuneyt Dincer, Timur Tongur, T. Erkaymaz\",\"doi\":\"10.1080/08327823.2023.2235549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study investigates the modeling of the concentration of hibiscus extracts and the effect of the concentration process on some quality properties of hibiscus extracts. Absolute pressure was applied as 250 mbar in all concentration processes. Thermal vacuum concentration process was applied at 75 °C and 80 °C, thermosonic vacuum concentration process was applied at 75 °C and 0.02 W/mL AED, and microwave vacuum concentration treatment was applied at 180 and 300 W. The shortest processing time was achieved with the microwave vacuum concentration process at 300 W. Among the 13 models used, Midilli was the most successful model (R 2 ≥ 0.9951, χ2 ≤ 1.0185 and RMSE ≤ 1.0092)) in describing the concentration data. No significant change was determined in the physicochemical properties of the concentrated samples. However, a significant increase was determined in the turbidity values of the concentrated hibiscus samples, while a significant decrease was noted in the anthocyanin content and composition and antioxidant activity values of the concentrated samples compared to the initial sample.\",\"PeriodicalId\":16556,\"journal\":{\"name\":\"Journal of Microwave Power and Electromagnetic Energy\",\"volume\":\"82 1\",\"pages\":\"163 - 177\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microwave Power and Electromagnetic Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/08327823.2023.2235549\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microwave Power and Electromagnetic Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/08327823.2023.2235549","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Effect of the microwave and thermosonic vacuum concentration methods on quality parameters of hibiscus (hibiscus sabdariffa L.) extract and mathematical modeling of concentration
Abstract This study investigates the modeling of the concentration of hibiscus extracts and the effect of the concentration process on some quality properties of hibiscus extracts. Absolute pressure was applied as 250 mbar in all concentration processes. Thermal vacuum concentration process was applied at 75 °C and 80 °C, thermosonic vacuum concentration process was applied at 75 °C and 0.02 W/mL AED, and microwave vacuum concentration treatment was applied at 180 and 300 W. The shortest processing time was achieved with the microwave vacuum concentration process at 300 W. Among the 13 models used, Midilli was the most successful model (R 2 ≥ 0.9951, χ2 ≤ 1.0185 and RMSE ≤ 1.0092)) in describing the concentration data. No significant change was determined in the physicochemical properties of the concentrated samples. However, a significant increase was determined in the turbidity values of the concentrated hibiscus samples, while a significant decrease was noted in the anthocyanin content and composition and antioxidant activity values of the concentrated samples compared to the initial sample.
期刊介绍:
The Journal of the Microwave Power Energy (JMPEE) is a quarterly publication of the International Microwave Power Institute (IMPI), aimed to be one of the primary sources of the most reliable information in the arts and sciences of microwave and RF technology. JMPEE provides space to engineers and researchers for presenting papers about non-communication applications of microwave and RF, mostly industrial, scientific, medical and instrumentation. Topics include, but are not limited to: applications in materials science and nanotechnology, characterization of biological tissues, food industry applications, green chemistry, health and therapeutic applications, microwave chemistry, microwave processing of materials, soil remediation, and waste processing.