广泛应用的高效信号重构

Abolfazl Asudeh, Jees Augustine, Azade Nazi, Saravanan Thirumuruganathan, Nan Zhang, Gautam Das, D. Srivastava
{"title":"广泛应用的高效信号重构","authors":"Abolfazl Asudeh, Jees Augustine, Azade Nazi, Saravanan Thirumuruganathan, Nan Zhang, Gautam Das, D. Srivastava","doi":"10.1145/3371316.3371327","DOIUrl":null,"url":null,"abstract":"The signal reconstruction problem (SRP) is an important optimization problem where the objective is to identify a solution to an under-determined system of linear equations AX = b that is closest to a given prior. It has a substantial number of applications in diverse areas including network traffic engineering, medical image reconstruction, acoustics, astronomy and many more. Most common approaches for solving SRP do not scale to large problem sizes. In this paper, we propose a dual formulation of this problem and show how adapting database techniques developed for scalable similarity joins provides a significant speedup when the A matrix is sparse and binary. Extensive experiments on real-world and synthetic data show that our approach produces a significant speedup of up to 20x over competing approaches.","PeriodicalId":21740,"journal":{"name":"SIGMOD Rec.","volume":"78 1","pages":"42-49"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient Signal Reconstruction for a Broad Range of Applications\",\"authors\":\"Abolfazl Asudeh, Jees Augustine, Azade Nazi, Saravanan Thirumuruganathan, Nan Zhang, Gautam Das, D. Srivastava\",\"doi\":\"10.1145/3371316.3371327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The signal reconstruction problem (SRP) is an important optimization problem where the objective is to identify a solution to an under-determined system of linear equations AX = b that is closest to a given prior. It has a substantial number of applications in diverse areas including network traffic engineering, medical image reconstruction, acoustics, astronomy and many more. Most common approaches for solving SRP do not scale to large problem sizes. In this paper, we propose a dual formulation of this problem and show how adapting database techniques developed for scalable similarity joins provides a significant speedup when the A matrix is sparse and binary. Extensive experiments on real-world and synthetic data show that our approach produces a significant speedup of up to 20x over competing approaches.\",\"PeriodicalId\":21740,\"journal\":{\"name\":\"SIGMOD Rec.\",\"volume\":\"78 1\",\"pages\":\"42-49\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGMOD Rec.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3371316.3371327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGMOD Rec.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3371316.3371327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

信号重构问题(SRP)是一个重要的优化问题,其目标是识别与给定先验最接近的欠定线性方程组AX = b的解。它在不同的领域有大量的应用,包括网络流量工程、医学图像重建、声学、天文学等等。大多数常见的解决SRP的方法不能扩展到大的问题规模。在本文中,我们提出了这个问题的对偶公式,并展示了当a矩阵是稀疏的和二进制的时,如何适应为可扩展相似连接开发的数据库技术提供了显着的加速。在真实世界和合成数据上的大量实验表明,我们的方法比竞争方法产生了高达20倍的显著加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Signal Reconstruction for a Broad Range of Applications
The signal reconstruction problem (SRP) is an important optimization problem where the objective is to identify a solution to an under-determined system of linear equations AX = b that is closest to a given prior. It has a substantial number of applications in diverse areas including network traffic engineering, medical image reconstruction, acoustics, astronomy and many more. Most common approaches for solving SRP do not scale to large problem sizes. In this paper, we propose a dual formulation of this problem and show how adapting database techniques developed for scalable similarity joins provides a significant speedup when the A matrix is sparse and binary. Extensive experiments on real-world and synthetic data show that our approach produces a significant speedup of up to 20x over competing approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信