{"title":"面向智能电网需求侧管理的电力负荷与成本优化","authors":"A. Afzaal, M. Nazir","doi":"10.22581/10.22581/MUET1982.1804.15","DOIUrl":null,"url":null,"abstract":"This paper proposes a mechanism for OELC (Optimizing Electricity Load and Cost) for smart grid. The load of every smart home is predicted one-hour prior to their actual usage. To fulfill PL (Predicted Load) of each consumer, multiple resources of electricity are considered, including RE (Renewable Energy) resources. Furthermore, cost to get PL from multiple resources is calculated. In proposed model 3-4 smart homes are grouped in the form of clusters. To reduce the amount of electricity bills, system also allows privileges to share electricity between adjacent smart homes within a cluster. To validate the OELC mechanism, extensive numerical simulations are conducted which shows a significant reduction in electricity load and cost for electricity consumers. In future, to enhance the functionality of OELC, security from cyber-attacks can be considered","PeriodicalId":11240,"journal":{"name":"Day 1 Tue, October 23, 2018","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimizing Electricity Load and Cost for Demand Side Management in Smart Grid\",\"authors\":\"A. Afzaal, M. Nazir\",\"doi\":\"10.22581/10.22581/MUET1982.1804.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a mechanism for OELC (Optimizing Electricity Load and Cost) for smart grid. The load of every smart home is predicted one-hour prior to their actual usage. To fulfill PL (Predicted Load) of each consumer, multiple resources of electricity are considered, including RE (Renewable Energy) resources. Furthermore, cost to get PL from multiple resources is calculated. In proposed model 3-4 smart homes are grouped in the form of clusters. To reduce the amount of electricity bills, system also allows privileges to share electricity between adjacent smart homes within a cluster. To validate the OELC mechanism, extensive numerical simulations are conducted which shows a significant reduction in electricity load and cost for electricity consumers. In future, to enhance the functionality of OELC, security from cyber-attacks can be considered\",\"PeriodicalId\":11240,\"journal\":{\"name\":\"Day 1 Tue, October 23, 2018\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Tue, October 23, 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22581/10.22581/MUET1982.1804.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, October 23, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22581/10.22581/MUET1982.1804.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing Electricity Load and Cost for Demand Side Management in Smart Grid
This paper proposes a mechanism for OELC (Optimizing Electricity Load and Cost) for smart grid. The load of every smart home is predicted one-hour prior to their actual usage. To fulfill PL (Predicted Load) of each consumer, multiple resources of electricity are considered, including RE (Renewable Energy) resources. Furthermore, cost to get PL from multiple resources is calculated. In proposed model 3-4 smart homes are grouped in the form of clusters. To reduce the amount of electricity bills, system also allows privileges to share electricity between adjacent smart homes within a cluster. To validate the OELC mechanism, extensive numerical simulations are conducted which shows a significant reduction in electricity load and cost for electricity consumers. In future, to enhance the functionality of OELC, security from cyber-attacks can be considered