多项式时间度的子格

Q4 Mathematics
Klaus Ambos-Spies
{"title":"多项式时间度的子格","authors":"Klaus Ambos-Spies","doi":"10.1016/S0019-9958(85)80020-6","DOIUrl":null,"url":null,"abstract":"<div><p>We show that any countable distributive lattice can be embedded in any interval of polynomial time degrees. Furthermore the embeddings can be chosen to preserve the least or the greatest element. This holds for both polynomial time bounded many-one and Turing reducibilities, as well as for all of the common intermediate reducibilities.</p></div>","PeriodicalId":38164,"journal":{"name":"信息与控制","volume":"65 1","pages":"Pages 63-84"},"PeriodicalIF":0.0000,"publicationDate":"1985-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0019-9958(85)80020-6","citationCount":"29","resultStr":"{\"title\":\"Sublattices of the polynomial time degrees\",\"authors\":\"Klaus Ambos-Spies\",\"doi\":\"10.1016/S0019-9958(85)80020-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that any countable distributive lattice can be embedded in any interval of polynomial time degrees. Furthermore the embeddings can be chosen to preserve the least or the greatest element. This holds for both polynomial time bounded many-one and Turing reducibilities, as well as for all of the common intermediate reducibilities.</p></div>\",\"PeriodicalId\":38164,\"journal\":{\"name\":\"信息与控制\",\"volume\":\"65 1\",\"pages\":\"Pages 63-84\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0019-9958(85)80020-6\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"信息与控制\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019995885800206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"信息与控制","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019995885800206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 29

摘要

我们证明了任何可数分配格都可以嵌入到多项式时间度的任意区间中。此外,可以选择保留最小或最大元素的嵌入。这对多项式时间有界多一可约性和图灵可约性,以及所有常见的中间可约性都成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sublattices of the polynomial time degrees

We show that any countable distributive lattice can be embedded in any interval of polynomial time degrees. Furthermore the embeddings can be chosen to preserve the least or the greatest element. This holds for both polynomial time bounded many-one and Turing reducibilities, as well as for all of the common intermediate reducibilities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
信息与控制
信息与控制 Mathematics-Control and Optimization
CiteScore
1.50
自引率
0.00%
发文量
4623
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信