仿射参数算子方程的多阶高阶QMC Galerkin离散化

J. Dick, F. Kuo, Q. Gia, C. Schwab
{"title":"仿射参数算子方程的多阶高阶QMC Galerkin离散化","authors":"J. Dick, F. Kuo, Q. Gia, C. Schwab","doi":"10.3929/ETHZ-A-010386245","DOIUrl":null,"url":null,"abstract":"We develop a convergence analysis of a multi-level algorithm combining higher order quasi-Monte Carlo (QMC) quadratures with general Petrov-Galerkin discretizations of countably affine parametric operator equations of elliptic and parabolic type, extending both the multi-level first order analysis in [\\emph{F.Y.~Kuo, Ch.~Schwab, and I.H.~Sloan, Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficient} (in review)] and the single level higher order analysis in [\\emph{J.~Dick, F.Y.~Kuo, Q.T.~Le~Gia, D.~Nuyens, and Ch.~Schwab, Higher order QMC Galerkin discretization for parametric operator equations} (in review)]. We cover, in particular, both definite as well as indefinite, strongly elliptic systems of partial differential equations (PDEs) in non-smooth domains, and discuss in detail the impact of higher order derivatives of {\\KL} eigenfunctions in the parametrization of random PDE inputs on the convergence results. Based on our \\emph{a-priori} error bounds, concrete choices of algorithm parameters are proposed in order to achieve a prescribed accuracy under minimal computational work. Problem classes and sufficient conditions on data are identified where multi-level higher order QMC Petrov-Galerkin algorithms outperform the corresponding single level versions of these algorithms. Numerical experiments confirm the theoretical results.","PeriodicalId":22276,"journal":{"name":"The annual research report","volume":"156 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Multi-level higher order QMC Galerkin discretization for affine parametric operator equations\",\"authors\":\"J. Dick, F. Kuo, Q. Gia, C. Schwab\",\"doi\":\"10.3929/ETHZ-A-010386245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a convergence analysis of a multi-level algorithm combining higher order quasi-Monte Carlo (QMC) quadratures with general Petrov-Galerkin discretizations of countably affine parametric operator equations of elliptic and parabolic type, extending both the multi-level first order analysis in [\\\\emph{F.Y.~Kuo, Ch.~Schwab, and I.H.~Sloan, Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficient} (in review)] and the single level higher order analysis in [\\\\emph{J.~Dick, F.Y.~Kuo, Q.T.~Le~Gia, D.~Nuyens, and Ch.~Schwab, Higher order QMC Galerkin discretization for parametric operator equations} (in review)]. We cover, in particular, both definite as well as indefinite, strongly elliptic systems of partial differential equations (PDEs) in non-smooth domains, and discuss in detail the impact of higher order derivatives of {\\\\KL} eigenfunctions in the parametrization of random PDE inputs on the convergence results. Based on our \\\\emph{a-priori} error bounds, concrete choices of algorithm parameters are proposed in order to achieve a prescribed accuracy under minimal computational work. Problem classes and sufficient conditions on data are identified where multi-level higher order QMC Petrov-Galerkin algorithms outperform the corresponding single level versions of these algorithms. Numerical experiments confirm the theoretical results.\",\"PeriodicalId\":22276,\"journal\":{\"name\":\"The annual research report\",\"volume\":\"156 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The annual research report\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3929/ETHZ-A-010386245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The annual research report","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3929/ETHZ-A-010386245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

本文对椭圆型和抛物型可数仿射参数算子方程的高阶拟蒙特卡罗(QMC)正交与一般Petrov-Galerkin离散相结合的多阶算法进行了收敛性分析,推广了论文[\emph{F.Y.]中的多阶一阶分析郭志强,许志强,李志强,一类具有随机系数的椭圆型偏微分方程的多阶拟蒙特卡罗有限元方法}[\emph{J]。郭富银,郭庆涛,郭庆涛,郭庆涛,郭庆涛,郭庆涛,郭庆涛,郭庆涛,郭庆涛,郭庆涛,郭庆涛},郭庆涛,郭庆涛,郭庆涛,郭庆涛,郭庆涛,郭庆涛。我们特别讨论了非光滑域上的确定和不定强椭圆型偏微分方程系统,并详细讨论了随机偏微分方程输入参数化过程中{\KL}特征函数的高阶导数对收敛结果的影响。根据我们的\emph{先验}误差范围,提出了算法参数的具体选择,以便在最小的计算量下达到规定的精度。确定了数据上的问题类和充分条件,其中多级高阶QMC Petrov-Galerkin算法优于这些算法的相应单级版本。数值实验证实了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-level higher order QMC Galerkin discretization for affine parametric operator equations
We develop a convergence analysis of a multi-level algorithm combining higher order quasi-Monte Carlo (QMC) quadratures with general Petrov-Galerkin discretizations of countably affine parametric operator equations of elliptic and parabolic type, extending both the multi-level first order analysis in [\emph{F.Y.~Kuo, Ch.~Schwab, and I.H.~Sloan, Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficient} (in review)] and the single level higher order analysis in [\emph{J.~Dick, F.Y.~Kuo, Q.T.~Le~Gia, D.~Nuyens, and Ch.~Schwab, Higher order QMC Galerkin discretization for parametric operator equations} (in review)]. We cover, in particular, both definite as well as indefinite, strongly elliptic systems of partial differential equations (PDEs) in non-smooth domains, and discuss in detail the impact of higher order derivatives of {\KL} eigenfunctions in the parametrization of random PDE inputs on the convergence results. Based on our \emph{a-priori} error bounds, concrete choices of algorithm parameters are proposed in order to achieve a prescribed accuracy under minimal computational work. Problem classes and sufficient conditions on data are identified where multi-level higher order QMC Petrov-Galerkin algorithms outperform the corresponding single level versions of these algorithms. Numerical experiments confirm the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信