{"title":"物联网辅助无人机害虫检测优化深度学习模型","authors":"Vijayalakshmi G, Radhika Y","doi":"10.3233/web-230062","DOIUrl":null,"url":null,"abstract":"IoT technologies & UAVs are frequently utilized in ecological monitoring areas. Unmanned Aerial Vehicles (UAVs) & IoT in farming technology can evaluate crop disease & pest incidence from the ground’s micro & macro aspects, correspondingly. UAVs could capture images of farms using a spectral camera system, and these images are been used to examine the presence of agricultural pests and diseases. In this research work, a novel IoT- assisted UAV- based pest detection with Arithmetic Crossover based Black Widow Optimization-Convolutional Neural Network (ACBWO-CNN) model is developed in the field of agriculture. Cloud computing mechanism is used for monitoring and discovering the pest during crop production by using UAVs. The need for this method is to provide data centers, so there is a necessary amount of memory storage in addition to the processing of several images. Initially, the collected input image by the UAV is assumed on handling the via-IoT-cloud server, from which the pest identification takes place. The pest detection unit will be designed with three major phases: (a) background &foreground Segmentation, (b) Feature Extraction & (c) Classification. In the foreground and background Segmentation phase, the K-means clustering will be utilized for segmenting the pest images. From the segmented images, it extracts the features including Local Binary Pattern (LBP) &improved Local Vector Pattern (LVP) features. With these features, the optimized CNN classifier in the classification phase will be trained for the identification of pests in crops. Since the final detection outcome is from the Convolutional Neural Network (CNN); its weights are fine-tuned through the ACBWO approach. Thus, the output from optimized CNN will portray the type of pest identified in the field. This method’s performance is compared to other existing methods concerning a few measures.","PeriodicalId":42775,"journal":{"name":"Web Intelligence","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Internet of Things assisted Unmanned Aerial Vehicle for Pest Detection with Optimized Deep Learning Model\",\"authors\":\"Vijayalakshmi G, Radhika Y\",\"doi\":\"10.3233/web-230062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"IoT technologies & UAVs are frequently utilized in ecological monitoring areas. Unmanned Aerial Vehicles (UAVs) & IoT in farming technology can evaluate crop disease & pest incidence from the ground’s micro & macro aspects, correspondingly. UAVs could capture images of farms using a spectral camera system, and these images are been used to examine the presence of agricultural pests and diseases. In this research work, a novel IoT- assisted UAV- based pest detection with Arithmetic Crossover based Black Widow Optimization-Convolutional Neural Network (ACBWO-CNN) model is developed in the field of agriculture. Cloud computing mechanism is used for monitoring and discovering the pest during crop production by using UAVs. The need for this method is to provide data centers, so there is a necessary amount of memory storage in addition to the processing of several images. Initially, the collected input image by the UAV is assumed on handling the via-IoT-cloud server, from which the pest identification takes place. The pest detection unit will be designed with three major phases: (a) background &foreground Segmentation, (b) Feature Extraction & (c) Classification. In the foreground and background Segmentation phase, the K-means clustering will be utilized for segmenting the pest images. From the segmented images, it extracts the features including Local Binary Pattern (LBP) &improved Local Vector Pattern (LVP) features. With these features, the optimized CNN classifier in the classification phase will be trained for the identification of pests in crops. Since the final detection outcome is from the Convolutional Neural Network (CNN); its weights are fine-tuned through the ACBWO approach. Thus, the output from optimized CNN will portray the type of pest identified in the field. This method’s performance is compared to other existing methods concerning a few measures.\",\"PeriodicalId\":42775,\"journal\":{\"name\":\"Web Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Web Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/web-230062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/web-230062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Internet of Things assisted Unmanned Aerial Vehicle for Pest Detection with Optimized Deep Learning Model
IoT technologies & UAVs are frequently utilized in ecological monitoring areas. Unmanned Aerial Vehicles (UAVs) & IoT in farming technology can evaluate crop disease & pest incidence from the ground’s micro & macro aspects, correspondingly. UAVs could capture images of farms using a spectral camera system, and these images are been used to examine the presence of agricultural pests and diseases. In this research work, a novel IoT- assisted UAV- based pest detection with Arithmetic Crossover based Black Widow Optimization-Convolutional Neural Network (ACBWO-CNN) model is developed in the field of agriculture. Cloud computing mechanism is used for monitoring and discovering the pest during crop production by using UAVs. The need for this method is to provide data centers, so there is a necessary amount of memory storage in addition to the processing of several images. Initially, the collected input image by the UAV is assumed on handling the via-IoT-cloud server, from which the pest identification takes place. The pest detection unit will be designed with three major phases: (a) background &foreground Segmentation, (b) Feature Extraction & (c) Classification. In the foreground and background Segmentation phase, the K-means clustering will be utilized for segmenting the pest images. From the segmented images, it extracts the features including Local Binary Pattern (LBP) &improved Local Vector Pattern (LVP) features. With these features, the optimized CNN classifier in the classification phase will be trained for the identification of pests in crops. Since the final detection outcome is from the Convolutional Neural Network (CNN); its weights are fine-tuned through the ACBWO approach. Thus, the output from optimized CNN will portray the type of pest identified in the field. This method’s performance is compared to other existing methods concerning a few measures.
期刊介绍:
Web Intelligence (WI) is an official journal of the Web Intelligence Consortium (WIC), an international organization dedicated to promoting collaborative scientific research and industrial development in the era of Web intelligence. WI seeks to collaborate with major societies and international conferences in the field. WI is a peer-reviewed journal, which publishes four issues a year, in both online and print form. WI aims to achieve a multi-disciplinary balance between research advances in theories and methods usually associated with Collective Intelligence, Data Science, Human-Centric Computing, Knowledge Management, and Network Science. It is committed to publishing research that both deepen the understanding of computational, logical, cognitive, physical, and social foundations of the future Web, and enable the development and application of technologies based on Web intelligence. The journal features high-quality, original research papers (including state-of-the-art reviews), brief papers, and letters in all theoretical and technology areas that make up the field of WI. The papers should clearly focus on some of the following areas of interest: a. Collective Intelligence[...] b. Data Science[...] c. Human-Centric Computing[...] d. Knowledge Management[...] e. Network Science[...]