{"title":"奇异Gierer-Meinhardt系统阴影极限模型的扩散诱导爆破解","authors":"G. K. Duong, N. Kavallaris, H. Zaag","doi":"10.1142/s0218202521500305","DOIUrl":null,"url":null,"abstract":"In the current paper, we provide a thorough investigation of the blowing up behaviour induced via diffusion of the solution of the following non local problem \\begin{equation*} \\left\\{\\begin{array}{rcl} \\partial_t u &=& \\Delta u - u + \\displaystyle{\\frac{u^p}{ \\left(\\mathop{\\,\\rlap{-}\\!\\!\\int}\\nolimits_\\Omega u^r dr \\right)^\\gamma }}\\quad\\text{in}\\quad \\Omega \\times (0,T), \\\\[0.2cm] \\frac{ \\partial u}{ \\partial \\nu} & = & 0 \\text{ on } \\Gamma = \\partial \\Omega \\times (0,T),\\\\ u(0) & = & u_0, \\end{array} \\right. \\end{equation*} where $\\Omega$ is a bounded domain in $\\mathbb{R}^N$ with smooth boundary $\\partial \\Omega;$ such problem is derived as the shadow limit of a singular Gierer-Meinhardt system, cf. \\cite{KSN17, NKMI2018}. Under the Turing type condition $$ \\frac{r}{p-1} < \\frac{N}{2}, \\gamma r \\ne p-1, $$ we construct a solution which blows up in finite time and only at an interior point $x_0$ of $\\Omega,$ i.e. $$ u(x_0, t) \\sim (\\theta^*)^{-\\frac{1}{p-1}} \\left[\\kappa (T-t)^{-\\frac{1}{p-1}} \\right], $$ where $$ \\theta^* := \\lim_{t \\to T} \\left(\\mathop{\\,\\rlap{-}\\!\\!\\int}\\nolimits_\\Omega u^r dr \\right)^{- \\gamma} \\text{ and } \\kappa = (p-1)^{-\\frac{1}{p-1}}. $$ More precisely, we also give a description on the final asymptotic profile at the blowup point $$ u(x,T) \\sim ( \\theta^* )^{-\\frac{1}{p-1}} \\left[ \\frac{(p-1)^2}{8p} \\frac{|x-x_0|^2}{ |\\ln|x-x_0||} \\right]^{ -\\frac{1}{p-1}} \\text{ as } x \\to 0, $$ and thus we unveil the form of the Turing patterns occurring in that case due to driven-diffusion instability. The applied technique for the construction of the preceding blowing up solution mainly relies on the approach developed in \\cite{MZnon97} and \\cite{DZM3AS19}.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"100 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Diffusion-induced blowup solutions for the shadow limit model of a singular Gierer–Meinhardt system\",\"authors\":\"G. K. Duong, N. Kavallaris, H. Zaag\",\"doi\":\"10.1142/s0218202521500305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the current paper, we provide a thorough investigation of the blowing up behaviour induced via diffusion of the solution of the following non local problem \\\\begin{equation*} \\\\left\\\\{\\\\begin{array}{rcl} \\\\partial_t u &=& \\\\Delta u - u + \\\\displaystyle{\\\\frac{u^p}{ \\\\left(\\\\mathop{\\\\,\\\\rlap{-}\\\\!\\\\!\\\\int}\\\\nolimits_\\\\Omega u^r dr \\\\right)^\\\\gamma }}\\\\quad\\\\text{in}\\\\quad \\\\Omega \\\\times (0,T), \\\\\\\\[0.2cm] \\\\frac{ \\\\partial u}{ \\\\partial \\\\nu} & = & 0 \\\\text{ on } \\\\Gamma = \\\\partial \\\\Omega \\\\times (0,T),\\\\\\\\ u(0) & = & u_0, \\\\end{array} \\\\right. \\\\end{equation*} where $\\\\Omega$ is a bounded domain in $\\\\mathbb{R}^N$ with smooth boundary $\\\\partial \\\\Omega;$ such problem is derived as the shadow limit of a singular Gierer-Meinhardt system, cf. \\\\cite{KSN17, NKMI2018}. Under the Turing type condition $$ \\\\frac{r}{p-1} < \\\\frac{N}{2}, \\\\gamma r \\\\ne p-1, $$ we construct a solution which blows up in finite time and only at an interior point $x_0$ of $\\\\Omega,$ i.e. $$ u(x_0, t) \\\\sim (\\\\theta^*)^{-\\\\frac{1}{p-1}} \\\\left[\\\\kappa (T-t)^{-\\\\frac{1}{p-1}} \\\\right], $$ where $$ \\\\theta^* := \\\\lim_{t \\\\to T} \\\\left(\\\\mathop{\\\\,\\\\rlap{-}\\\\!\\\\!\\\\int}\\\\nolimits_\\\\Omega u^r dr \\\\right)^{- \\\\gamma} \\\\text{ and } \\\\kappa = (p-1)^{-\\\\frac{1}{p-1}}. $$ More precisely, we also give a description on the final asymptotic profile at the blowup point $$ u(x,T) \\\\sim ( \\\\theta^* )^{-\\\\frac{1}{p-1}} \\\\left[ \\\\frac{(p-1)^2}{8p} \\\\frac{|x-x_0|^2}{ |\\\\ln|x-x_0||} \\\\right]^{ -\\\\frac{1}{p-1}} \\\\text{ as } x \\\\to 0, $$ and thus we unveil the form of the Turing patterns occurring in that case due to driven-diffusion instability. The applied technique for the construction of the preceding blowing up solution mainly relies on the approach developed in \\\\cite{MZnon97} and \\\\cite{DZM3AS19}.\",\"PeriodicalId\":8445,\"journal\":{\"name\":\"arXiv: Analysis of PDEs\",\"volume\":\"100 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218202521500305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218202521500305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
摘要
在本文中,我们对以下非局部问题\begin{equation*} \left\{\begin{array}{rcl} \partial_t u &=& \Delta u - u + \displaystyle{\frac{u^p}{ \left(\mathop{\,\rlap{-}\!\!\int}\nolimits_\Omega u^r dr \right)^\gamma }}\quad\text{in}\quad \Omega \times (0,T), \\[0.2cm] \frac{ \partial u}{ \partial \nu} & = & 0 \text{ on } \Gamma = \partial \Omega \times (0,T),\\ u(0) & = & u_0, \end{array} \right. \end{equation*}的解的扩散引起的爆炸行为进行了深入的研究,其中$\Omega$是$\mathbb{R}^N$中具有光滑边界的有界区域$\partial \Omega;$,该问题被导出为奇异Gierer-Meinhardt系统的阴影极限,参见\cite{KSN17, NKMI2018}。在图灵型条件$$ \frac{r}{p-1} < \frac{N}{2}, \gamma r \ne p-1, $$下,我们构造了一个在有限时间内只在$\Omega,$的内部点$x_0$爆炸的解,即$$ u(x_0, t) \sim (\theta^*)^{-\frac{1}{p-1}} \left[\kappa (T-t)^{-\frac{1}{p-1}} \right], $$,其中$$ \theta^* := \lim_{t \to T} \left(\mathop{\,\rlap{-}\!\!\int}\nolimits_\Omega u^r dr \right)^{- \gamma} \text{ and } \kappa = (p-1)^{-\frac{1}{p-1}}. $$更准确地说,我们还给出了爆炸点$$ u(x,T) \sim ( \theta^* )^{-\frac{1}{p-1}} \left[ \frac{(p-1)^2}{8p} \frac{|x-x_0|^2}{ |\ln|x-x_0||} \right]^{ -\frac{1}{p-1}} \text{ as } x \to 0, $$的最终渐近轮廓的描述,从而揭示了由于驱动扩散不稳定而在这种情况下发生的图灵模式的形式。构建上述爆破溶液的应用技术主要依靠\cite{MZnon97}和\cite{DZM3AS19}中开发的方法。
Diffusion-induced blowup solutions for the shadow limit model of a singular Gierer–Meinhardt system
In the current paper, we provide a thorough investigation of the blowing up behaviour induced via diffusion of the solution of the following non local problem \begin{equation*} \left\{\begin{array}{rcl} \partial_t u &=& \Delta u - u + \displaystyle{\frac{u^p}{ \left(\mathop{\,\rlap{-}\!\!\int}\nolimits_\Omega u^r dr \right)^\gamma }}\quad\text{in}\quad \Omega \times (0,T), \\[0.2cm] \frac{ \partial u}{ \partial \nu} & = & 0 \text{ on } \Gamma = \partial \Omega \times (0,T),\\ u(0) & = & u_0, \end{array} \right. \end{equation*} where $\Omega$ is a bounded domain in $\mathbb{R}^N$ with smooth boundary $\partial \Omega;$ such problem is derived as the shadow limit of a singular Gierer-Meinhardt system, cf. \cite{KSN17, NKMI2018}. Under the Turing type condition $$ \frac{r}{p-1} < \frac{N}{2}, \gamma r \ne p-1, $$ we construct a solution which blows up in finite time and only at an interior point $x_0$ of $\Omega,$ i.e. $$ u(x_0, t) \sim (\theta^*)^{-\frac{1}{p-1}} \left[\kappa (T-t)^{-\frac{1}{p-1}} \right], $$ where $$ \theta^* := \lim_{t \to T} \left(\mathop{\,\rlap{-}\!\!\int}\nolimits_\Omega u^r dr \right)^{- \gamma} \text{ and } \kappa = (p-1)^{-\frac{1}{p-1}}. $$ More precisely, we also give a description on the final asymptotic profile at the blowup point $$ u(x,T) \sim ( \theta^* )^{-\frac{1}{p-1}} \left[ \frac{(p-1)^2}{8p} \frac{|x-x_0|^2}{ |\ln|x-x_0||} \right]^{ -\frac{1}{p-1}} \text{ as } x \to 0, $$ and thus we unveil the form of the Turing patterns occurring in that case due to driven-diffusion instability. The applied technique for the construction of the preceding blowing up solution mainly relies on the approach developed in \cite{MZnon97} and \cite{DZM3AS19}.