奇异Gierer-Meinhardt系统阴影极限模型的扩散诱导爆破解

G. K. Duong, N. Kavallaris, H. Zaag
{"title":"奇异Gierer-Meinhardt系统阴影极限模型的扩散诱导爆破解","authors":"G. K. Duong, N. Kavallaris, H. Zaag","doi":"10.1142/s0218202521500305","DOIUrl":null,"url":null,"abstract":"In the current paper, we provide a thorough investigation of the blowing up behaviour induced via diffusion of the solution of the following non local problem \\begin{equation*} \\left\\{\\begin{array}{rcl} \\partial_t u &=& \\Delta u - u + \\displaystyle{\\frac{u^p}{ \\left(\\mathop{\\,\\rlap{-}\\!\\!\\int}\\nolimits_\\Omega u^r dr \\right)^\\gamma }}\\quad\\text{in}\\quad \\Omega \\times (0,T), \\\\[0.2cm] \\frac{ \\partial u}{ \\partial \\nu} & = & 0 \\text{ on } \\Gamma = \\partial \\Omega \\times (0,T),\\\\ u(0) & = & u_0, \\end{array} \\right. \\end{equation*} where $\\Omega$ is a bounded domain in $\\mathbb{R}^N$ with smooth boundary $\\partial \\Omega;$ such problem is derived as the shadow limit of a singular Gierer-Meinhardt system, cf. \\cite{KSN17, NKMI2018}. Under the Turing type condition $$ \\frac{r}{p-1} < \\frac{N}{2}, \\gamma r \\ne p-1, $$ we construct a solution which blows up in finite time and only at an interior point $x_0$ of $\\Omega,$ i.e. $$ u(x_0, t) \\sim (\\theta^*)^{-\\frac{1}{p-1}} \\left[\\kappa (T-t)^{-\\frac{1}{p-1}} \\right], $$ where $$ \\theta^* := \\lim_{t \\to T} \\left(\\mathop{\\,\\rlap{-}\\!\\!\\int}\\nolimits_\\Omega u^r dr \\right)^{- \\gamma} \\text{ and } \\kappa = (p-1)^{-\\frac{1}{p-1}}. $$ More precisely, we also give a description on the final asymptotic profile at the blowup point $$ u(x,T) \\sim ( \\theta^* )^{-\\frac{1}{p-1}} \\left[ \\frac{(p-1)^2}{8p} \\frac{|x-x_0|^2}{ |\\ln|x-x_0||} \\right]^{ -\\frac{1}{p-1}} \\text{ as } x \\to 0, $$ and thus we unveil the form of the Turing patterns occurring in that case due to driven-diffusion instability. The applied technique for the construction of the preceding blowing up solution mainly relies on the approach developed in \\cite{MZnon97} and \\cite{DZM3AS19}.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Diffusion-induced blowup solutions for the shadow limit model of a singular Gierer–Meinhardt system\",\"authors\":\"G. K. Duong, N. Kavallaris, H. Zaag\",\"doi\":\"10.1142/s0218202521500305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the current paper, we provide a thorough investigation of the blowing up behaviour induced via diffusion of the solution of the following non local problem \\\\begin{equation*} \\\\left\\\\{\\\\begin{array}{rcl} \\\\partial_t u &=& \\\\Delta u - u + \\\\displaystyle{\\\\frac{u^p}{ \\\\left(\\\\mathop{\\\\,\\\\rlap{-}\\\\!\\\\!\\\\int}\\\\nolimits_\\\\Omega u^r dr \\\\right)^\\\\gamma }}\\\\quad\\\\text{in}\\\\quad \\\\Omega \\\\times (0,T), \\\\\\\\[0.2cm] \\\\frac{ \\\\partial u}{ \\\\partial \\\\nu} & = & 0 \\\\text{ on } \\\\Gamma = \\\\partial \\\\Omega \\\\times (0,T),\\\\\\\\ u(0) & = & u_0, \\\\end{array} \\\\right. \\\\end{equation*} where $\\\\Omega$ is a bounded domain in $\\\\mathbb{R}^N$ with smooth boundary $\\\\partial \\\\Omega;$ such problem is derived as the shadow limit of a singular Gierer-Meinhardt system, cf. \\\\cite{KSN17, NKMI2018}. Under the Turing type condition $$ \\\\frac{r}{p-1} < \\\\frac{N}{2}, \\\\gamma r \\\\ne p-1, $$ we construct a solution which blows up in finite time and only at an interior point $x_0$ of $\\\\Omega,$ i.e. $$ u(x_0, t) \\\\sim (\\\\theta^*)^{-\\\\frac{1}{p-1}} \\\\left[\\\\kappa (T-t)^{-\\\\frac{1}{p-1}} \\\\right], $$ where $$ \\\\theta^* := \\\\lim_{t \\\\to T} \\\\left(\\\\mathop{\\\\,\\\\rlap{-}\\\\!\\\\!\\\\int}\\\\nolimits_\\\\Omega u^r dr \\\\right)^{- \\\\gamma} \\\\text{ and } \\\\kappa = (p-1)^{-\\\\frac{1}{p-1}}. $$ More precisely, we also give a description on the final asymptotic profile at the blowup point $$ u(x,T) \\\\sim ( \\\\theta^* )^{-\\\\frac{1}{p-1}} \\\\left[ \\\\frac{(p-1)^2}{8p} \\\\frac{|x-x_0|^2}{ |\\\\ln|x-x_0||} \\\\right]^{ -\\\\frac{1}{p-1}} \\\\text{ as } x \\\\to 0, $$ and thus we unveil the form of the Turing patterns occurring in that case due to driven-diffusion instability. The applied technique for the construction of the preceding blowing up solution mainly relies on the approach developed in \\\\cite{MZnon97} and \\\\cite{DZM3AS19}.\",\"PeriodicalId\":8445,\"journal\":{\"name\":\"arXiv: Analysis of PDEs\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218202521500305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218202521500305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们对以下非局部问题\begin{equation*} \left\{\begin{array}{rcl} \partial_t u &=& \Delta u - u + \displaystyle{\frac{u^p}{ \left(\mathop{\,\rlap{-}\!\!\int}\nolimits_\Omega u^r dr \right)^\gamma }}\quad\text{in}\quad \Omega \times (0,T), \\[0.2cm] \frac{ \partial u}{ \partial \nu} & = & 0 \text{ on } \Gamma = \partial \Omega \times (0,T),\\ u(0) & = & u_0, \end{array} \right. \end{equation*}的解的扩散引起的爆炸行为进行了深入的研究,其中$\Omega$是$\mathbb{R}^N$中具有光滑边界的有界区域$\partial \Omega;$,该问题被导出为奇异Gierer-Meinhardt系统的阴影极限,参见\cite{KSN17, NKMI2018}。在图灵型条件$$ \frac{r}{p-1} < \frac{N}{2}, \gamma r \ne p-1, $$下,我们构造了一个在有限时间内只在$\Omega,$的内部点$x_0$爆炸的解,即$$ u(x_0, t) \sim (\theta^*)^{-\frac{1}{p-1}} \left[\kappa (T-t)^{-\frac{1}{p-1}} \right], $$,其中$$ \theta^* := \lim_{t \to T} \left(\mathop{\,\rlap{-}\!\!\int}\nolimits_\Omega u^r dr \right)^{- \gamma} \text{ and } \kappa = (p-1)^{-\frac{1}{p-1}}. $$更准确地说,我们还给出了爆炸点$$ u(x,T) \sim ( \theta^* )^{-\frac{1}{p-1}} \left[ \frac{(p-1)^2}{8p} \frac{|x-x_0|^2}{ |\ln|x-x_0||} \right]^{ -\frac{1}{p-1}} \text{ as } x \to 0, $$的最终渐近轮廓的描述,从而揭示了由于驱动扩散不稳定而在这种情况下发生的图灵模式的形式。构建上述爆破溶液的应用技术主要依靠\cite{MZnon97}和\cite{DZM3AS19}中开发的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diffusion-induced blowup solutions for the shadow limit model of a singular Gierer–Meinhardt system
In the current paper, we provide a thorough investigation of the blowing up behaviour induced via diffusion of the solution of the following non local problem \begin{equation*} \left\{\begin{array}{rcl} \partial_t u &=& \Delta u - u + \displaystyle{\frac{u^p}{ \left(\mathop{\,\rlap{-}\!\!\int}\nolimits_\Omega u^r dr \right)^\gamma }}\quad\text{in}\quad \Omega \times (0,T), \\[0.2cm] \frac{ \partial u}{ \partial \nu} & = & 0 \text{ on } \Gamma = \partial \Omega \times (0,T),\\ u(0) & = & u_0, \end{array} \right. \end{equation*} where $\Omega$ is a bounded domain in $\mathbb{R}^N$ with smooth boundary $\partial \Omega;$ such problem is derived as the shadow limit of a singular Gierer-Meinhardt system, cf. \cite{KSN17, NKMI2018}. Under the Turing type condition $$ \frac{r}{p-1} < \frac{N}{2}, \gamma r \ne p-1, $$ we construct a solution which blows up in finite time and only at an interior point $x_0$ of $\Omega,$ i.e. $$ u(x_0, t) \sim (\theta^*)^{-\frac{1}{p-1}} \left[\kappa (T-t)^{-\frac{1}{p-1}} \right], $$ where $$ \theta^* := \lim_{t \to T} \left(\mathop{\,\rlap{-}\!\!\int}\nolimits_\Omega u^r dr \right)^{- \gamma} \text{ and } \kappa = (p-1)^{-\frac{1}{p-1}}. $$ More precisely, we also give a description on the final asymptotic profile at the blowup point $$ u(x,T) \sim ( \theta^* )^{-\frac{1}{p-1}} \left[ \frac{(p-1)^2}{8p} \frac{|x-x_0|^2}{ |\ln|x-x_0||} \right]^{ -\frac{1}{p-1}} \text{ as } x \to 0, $$ and thus we unveil the form of the Turing patterns occurring in that case due to driven-diffusion instability. The applied technique for the construction of the preceding blowing up solution mainly relies on the approach developed in \cite{MZnon97} and \cite{DZM3AS19}.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信