{"title":"锂在标准干燥室内的弹粘塑性力学","authors":"Lara L. Dienemann, A. Saigal, M. Zimmerman","doi":"10.1115/IMECE2020-23894","DOIUrl":null,"url":null,"abstract":"In electrochemical-mechanical modeling of solid-state batteries, there is a lack of understanding of the mechanical parameters and mode of deformation of lithium metal. Understanding these characteristics is crucial for predicting the propagation of lithium dendrites through the electrolyte — a key element of battery safety. Past theories have assumed linear elastic as well as elastic-plastic deformation of lithium. However, recent experiments show that the primary mode of deformation is creep. This study replicates the temperature dependent mechanical experiments but inside an industrial dry room, where battery cells are manufactured at high volume. Furthermore, this work conducts time dependent studies — also inside the dry room — to gain insight of the large deformation theories of lithium metal. The results confirm the activation energy, which dictates the creep mechanism, is correlated to core diffusion rather than lattice diffusion.","PeriodicalId":23837,"journal":{"name":"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications","volume":"150 5 Suppl 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Elastic-Viscoplastic Mechanics of Lithium in a Standard Dry Room\",\"authors\":\"Lara L. Dienemann, A. Saigal, M. Zimmerman\",\"doi\":\"10.1115/IMECE2020-23894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In electrochemical-mechanical modeling of solid-state batteries, there is a lack of understanding of the mechanical parameters and mode of deformation of lithium metal. Understanding these characteristics is crucial for predicting the propagation of lithium dendrites through the electrolyte — a key element of battery safety. Past theories have assumed linear elastic as well as elastic-plastic deformation of lithium. However, recent experiments show that the primary mode of deformation is creep. This study replicates the temperature dependent mechanical experiments but inside an industrial dry room, where battery cells are manufactured at high volume. Furthermore, this work conducts time dependent studies — also inside the dry room — to gain insight of the large deformation theories of lithium metal. The results confirm the activation energy, which dictates the creep mechanism, is correlated to core diffusion rather than lattice diffusion.\",\"PeriodicalId\":23837,\"journal\":{\"name\":\"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications\",\"volume\":\"150 5 Suppl 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2020-23894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2020-23894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Elastic-Viscoplastic Mechanics of Lithium in a Standard Dry Room
In electrochemical-mechanical modeling of solid-state batteries, there is a lack of understanding of the mechanical parameters and mode of deformation of lithium metal. Understanding these characteristics is crucial for predicting the propagation of lithium dendrites through the electrolyte — a key element of battery safety. Past theories have assumed linear elastic as well as elastic-plastic deformation of lithium. However, recent experiments show that the primary mode of deformation is creep. This study replicates the temperature dependent mechanical experiments but inside an industrial dry room, where battery cells are manufactured at high volume. Furthermore, this work conducts time dependent studies — also inside the dry room — to gain insight of the large deformation theories of lithium metal. The results confirm the activation energy, which dictates the creep mechanism, is correlated to core diffusion rather than lattice diffusion.