线板会聚角电液动力气泵方向对重力的影响

A. Lipchitz, G. Harvel
{"title":"线板会聚角电液动力气泵方向对重力的影响","authors":"A. Lipchitz, G. Harvel","doi":"10.1109/CEIDP.2011.6232720","DOIUrl":null,"url":null,"abstract":"Electrohydrodynamic (EHD) phenomena have been shown to enhance heat transfer in a variety of heat transport designs including capillary pumped loops for extraterrestrial nuclear applications. Previously, EHD enhancement has been shown to improve the heat transport of experimental CPLs. Further enhancement with the addition of EHD gas pumps to the vapour phase requires EHD gas pump phenomena and performance to be characterized with respect to gravity to determine the expected enhancement from this arrangement in zero and microgravity environments. In this paper an EHD gas pump is oriented with gravity (inverted), 90° to gravity (horizontal) and against gravity (vertical) to determine the effect gravitational and buoyancy forces have on the flow and heat transport of EHD gas pumps. The flow and temperature profiles of the pump at the outlet are presented to demonstrate the orientation effect gravity and buoyancy imposes on EHD gas pumps. The EHD number is calculated and presented. The paper determines that there is a noticeable orientation effect at lower applied voltages due to the heating effects causing recirculation in the flow being reduced with the aid of buoyancy forces. However, the effect is less noticeable at higher applied voltages due to the stronger EHD forces.","PeriodicalId":6317,"journal":{"name":"2011 Annual Report Conference on Electrical Insulation and Dielectric Phenomena","volume":"24 1","pages":"567-570"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of orientation with respect to gravity for a wire-plate convergent angle electrohydrodynamic gas pump\",\"authors\":\"A. Lipchitz, G. Harvel\",\"doi\":\"10.1109/CEIDP.2011.6232720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrohydrodynamic (EHD) phenomena have been shown to enhance heat transfer in a variety of heat transport designs including capillary pumped loops for extraterrestrial nuclear applications. Previously, EHD enhancement has been shown to improve the heat transport of experimental CPLs. Further enhancement with the addition of EHD gas pumps to the vapour phase requires EHD gas pump phenomena and performance to be characterized with respect to gravity to determine the expected enhancement from this arrangement in zero and microgravity environments. In this paper an EHD gas pump is oriented with gravity (inverted), 90° to gravity (horizontal) and against gravity (vertical) to determine the effect gravitational and buoyancy forces have on the flow and heat transport of EHD gas pumps. The flow and temperature profiles of the pump at the outlet are presented to demonstrate the orientation effect gravity and buoyancy imposes on EHD gas pumps. The EHD number is calculated and presented. The paper determines that there is a noticeable orientation effect at lower applied voltages due to the heating effects causing recirculation in the flow being reduced with the aid of buoyancy forces. However, the effect is less noticeable at higher applied voltages due to the stronger EHD forces.\",\"PeriodicalId\":6317,\"journal\":{\"name\":\"2011 Annual Report Conference on Electrical Insulation and Dielectric Phenomena\",\"volume\":\"24 1\",\"pages\":\"567-570\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Annual Report Conference on Electrical Insulation and Dielectric Phenomena\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEIDP.2011.6232720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Annual Report Conference on Electrical Insulation and Dielectric Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIDP.2011.6232720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电流体动力学(EHD)现象已被证明可以在各种热传输设计中增强传热,包括用于地外核应用的毛细管泵循环。先前,EHD增强已被证明可以改善实验cpl的热传输。在气相中增加EHD气泵的进一步增强需要对EHD气泵的现象和性能进行重力特征分析,以确定这种布置在零重力和微重力环境下的预期增强效果。本文采用重力导向(倒置)、与重力成90°(水平)和反重力导向(垂直)的方法,确定重力和浮力对EHD气泵流动和传热的影响。给出了泵出口处的流量和温度分布,以说明重力和浮力对EHD气泵的定向效应。计算并给出了EHD数。本文确定,在较低的施加电压下,由于在浮力的帮助下减少了流动中引起再循环的加热效应,因此存在明显的定向效应。然而,由于较强的EHD力,在较高的施加电压下,效果不太明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of orientation with respect to gravity for a wire-plate convergent angle electrohydrodynamic gas pump
Electrohydrodynamic (EHD) phenomena have been shown to enhance heat transfer in a variety of heat transport designs including capillary pumped loops for extraterrestrial nuclear applications. Previously, EHD enhancement has been shown to improve the heat transport of experimental CPLs. Further enhancement with the addition of EHD gas pumps to the vapour phase requires EHD gas pump phenomena and performance to be characterized with respect to gravity to determine the expected enhancement from this arrangement in zero and microgravity environments. In this paper an EHD gas pump is oriented with gravity (inverted), 90° to gravity (horizontal) and against gravity (vertical) to determine the effect gravitational and buoyancy forces have on the flow and heat transport of EHD gas pumps. The flow and temperature profiles of the pump at the outlet are presented to demonstrate the orientation effect gravity and buoyancy imposes on EHD gas pumps. The EHD number is calculated and presented. The paper determines that there is a noticeable orientation effect at lower applied voltages due to the heating effects causing recirculation in the flow being reduced with the aid of buoyancy forces. However, the effect is less noticeable at higher applied voltages due to the stronger EHD forces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信