Mary Sieugaing Tamwa, J. R. Njimou, B. B. Nguelo, C. Nanseu-Njiki, E. Vunain, B. Tripathy, E. Ngameni
{"title":"基于绿色合成的氧化铁纳米材料修饰的碳糊电极对刚果红的电化学分析和电容性能","authors":"Mary Sieugaing Tamwa, J. R. Njimou, B. B. Nguelo, C. Nanseu-Njiki, E. Vunain, B. Tripathy, E. Ngameni","doi":"10.1080/14328917.2022.2125694","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this study, a facile protocol was used to convert non-valuable orange peels (OP) waste into a new sensing iron oxide orange-peel nanomaterial (FeOP). The presence of iron oxide nanoparticles in the modified OP was confirmed by physicochemical characterisations including Fourier-transform infrared spectroscopy, X-ray diffractometry, thermogravimetry, and scanning electron microscopy-energy dispersive X-ray. FeOP was used to modify a carbon paste electrode (CPE/FeOP) which displayed a significant increase in specific capacitance of 2939 F.g−1, two folds higher than that obtained with CPE at 10 m.s−1 in NaCl. The electroanalysis of Congo red (CR) in aqueous solutions using CPE/FeOP displayed detection limits of 2.8 × 10−7 mol.L−1 and 8.2 × 10−7 mol.L−1 respectively in deionised and spring waters, in the linear range of 5 to 55 µM. CPE/FeOP electrochemical sensor is therefore suitable for the determination of Congo red in wastewater.","PeriodicalId":18235,"journal":{"name":"Materials Research Innovations","volume":"13 1","pages":"243 - 252"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electrochemical sensor based on green-synthesized iron oxide nanomaterial modified carbon paste electrode for Congo red electroanalysis and capacitance performance\",\"authors\":\"Mary Sieugaing Tamwa, J. R. Njimou, B. B. Nguelo, C. Nanseu-Njiki, E. Vunain, B. Tripathy, E. Ngameni\",\"doi\":\"10.1080/14328917.2022.2125694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this study, a facile protocol was used to convert non-valuable orange peels (OP) waste into a new sensing iron oxide orange-peel nanomaterial (FeOP). The presence of iron oxide nanoparticles in the modified OP was confirmed by physicochemical characterisations including Fourier-transform infrared spectroscopy, X-ray diffractometry, thermogravimetry, and scanning electron microscopy-energy dispersive X-ray. FeOP was used to modify a carbon paste electrode (CPE/FeOP) which displayed a significant increase in specific capacitance of 2939 F.g−1, two folds higher than that obtained with CPE at 10 m.s−1 in NaCl. The electroanalysis of Congo red (CR) in aqueous solutions using CPE/FeOP displayed detection limits of 2.8 × 10−7 mol.L−1 and 8.2 × 10−7 mol.L−1 respectively in deionised and spring waters, in the linear range of 5 to 55 µM. CPE/FeOP electrochemical sensor is therefore suitable for the determination of Congo red in wastewater.\",\"PeriodicalId\":18235,\"journal\":{\"name\":\"Materials Research Innovations\",\"volume\":\"13 1\",\"pages\":\"243 - 252\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Innovations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/14328917.2022.2125694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Innovations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14328917.2022.2125694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Electrochemical sensor based on green-synthesized iron oxide nanomaterial modified carbon paste electrode for Congo red electroanalysis and capacitance performance
ABSTRACT In this study, a facile protocol was used to convert non-valuable orange peels (OP) waste into a new sensing iron oxide orange-peel nanomaterial (FeOP). The presence of iron oxide nanoparticles in the modified OP was confirmed by physicochemical characterisations including Fourier-transform infrared spectroscopy, X-ray diffractometry, thermogravimetry, and scanning electron microscopy-energy dispersive X-ray. FeOP was used to modify a carbon paste electrode (CPE/FeOP) which displayed a significant increase in specific capacitance of 2939 F.g−1, two folds higher than that obtained with CPE at 10 m.s−1 in NaCl. The electroanalysis of Congo red (CR) in aqueous solutions using CPE/FeOP displayed detection limits of 2.8 × 10−7 mol.L−1 and 8.2 × 10−7 mol.L−1 respectively in deionised and spring waters, in the linear range of 5 to 55 µM. CPE/FeOP electrochemical sensor is therefore suitable for the determination of Congo red in wastewater.
期刊介绍:
Materials Research Innovations covers all areas of materials research with a particular interest in synthesis, processing, and properties from the nanoscale to the microscale to the bulk. Coverage includes all classes of material – ceramics, metals, and polymers; semiconductors and other functional materials; organic and inorganic materials – alone or in combination as composites. Innovation in composition and processing to impart special properties to bulk materials and coatings, and for innovative applications in technology, represents a strong focus. The journal attempts to balance enduring themes of science and engineering with the innovation provided by such areas of research activity.