{"title":"Társas támogatás megjelenése egy depresszió és szorongás témájú online fórumon","authors":"Fanni Máté","doi":"10.51624/SZOCSZEMLE.2021.1.3","DOIUrl":null,"url":null,"abstract":"Nowadays, online communities are typical sources of social support, which is a considerable help especially for those suffering from depression or anxiety. The aim of my research is to investigate the patterns of social support on an online depression and anxiety forum and to serve as an exploratory research of Natural Language Processing usage to classify comments into the categories of social support. The uniqueness of my research is the quantitative text analysis based on a complete qualitative analysis of the whole dataset. The conclusions of the qualitative analysis provide profound information for model definition, and for their evaluation. This knowledge is important for the investigation the potential of automatic text analysis in sociology. On average, four out of five comments are related to social support on the examined forum. Informational support appears in 59.9 percent of the supportive comments, while emotional support appears in 44.7 percent. The applied models’ accuracies are nearly 80 percent, which means that they classified the vast majority of comments into the right category. The results show that there is a potential in building reliable models in order to classify the comments into the previously defined categories of social support.","PeriodicalId":52512,"journal":{"name":"Szociologiai Szemle","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Szociologiai Szemle","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51624/SZOCSZEMLE.2021.1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
Társas támogatás megjelenése egy depresszió és szorongás témájú online fórumon
Nowadays, online communities are typical sources of social support, which is a considerable help especially for those suffering from depression or anxiety. The aim of my research is to investigate the patterns of social support on an online depression and anxiety forum and to serve as an exploratory research of Natural Language Processing usage to classify comments into the categories of social support. The uniqueness of my research is the quantitative text analysis based on a complete qualitative analysis of the whole dataset. The conclusions of the qualitative analysis provide profound information for model definition, and for their evaluation. This knowledge is important for the investigation the potential of automatic text analysis in sociology. On average, four out of five comments are related to social support on the examined forum. Informational support appears in 59.9 percent of the supportive comments, while emotional support appears in 44.7 percent. The applied models’ accuracies are nearly 80 percent, which means that they classified the vast majority of comments into the right category. The results show that there is a potential in building reliable models in order to classify the comments into the previously defined categories of social support.