过程采矿中概念漂移的研究进展

D. M. V. Sato, Sheila Cristiana de Freitas, J. P. Barddal, E. Scalabrin
{"title":"过程采矿中概念漂移的研究进展","authors":"D. M. V. Sato, Sheila Cristiana de Freitas, J. P. Barddal, E. Scalabrin","doi":"10.1145/3472752","DOIUrl":null,"url":null,"abstract":"Concept drift in process mining (PM) is a challenge as classical methods assume processes are in a steady-state, i.e., events share the same process version. We conducted a systematic literature review on the intersection of these areas, and thus, we review concept drift in PM and bring forward a taxonomy of existing techniques for drift detection and online PM for evolving environments. Existing works depict that (i) PM still primarily focuses on offline analysis, and (ii) the assessment of concept drift techniques in processes is cumbersome due to the lack of common evaluation protocol, datasets, and metrics.","PeriodicalId":7000,"journal":{"name":"ACM Computing Surveys (CSUR)","volume":"20 1","pages":"1 - 38"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"A Survey on Concept Drift in Process Mining\",\"authors\":\"D. M. V. Sato, Sheila Cristiana de Freitas, J. P. Barddal, E. Scalabrin\",\"doi\":\"10.1145/3472752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Concept drift in process mining (PM) is a challenge as classical methods assume processes are in a steady-state, i.e., events share the same process version. We conducted a systematic literature review on the intersection of these areas, and thus, we review concept drift in PM and bring forward a taxonomy of existing techniques for drift detection and online PM for evolving environments. Existing works depict that (i) PM still primarily focuses on offline analysis, and (ii) the assessment of concept drift techniques in processes is cumbersome due to the lack of common evaluation protocol, datasets, and metrics.\",\"PeriodicalId\":7000,\"journal\":{\"name\":\"ACM Computing Surveys (CSUR)\",\"volume\":\"20 1\",\"pages\":\"1 - 38\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys (CSUR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3472752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys (CSUR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3472752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

过程挖掘(PM)中的概念漂移是一个挑战,因为经典方法假设过程处于稳定状态,即事件共享相同的过程版本。我们对这些领域的交叉进行了系统的文献综述,因此,我们回顾了PM中的概念漂移,并提出了用于漂移检测的现有技术的分类,以及用于不断变化的环境的在线PM。现有的工作描述了(i) PM仍然主要关注离线分析,以及(ii)由于缺乏共同的评估协议、数据集和度量,过程中概念漂移技术的评估是繁琐的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Survey on Concept Drift in Process Mining
Concept drift in process mining (PM) is a challenge as classical methods assume processes are in a steady-state, i.e., events share the same process version. We conducted a systematic literature review on the intersection of these areas, and thus, we review concept drift in PM and bring forward a taxonomy of existing techniques for drift detection and online PM for evolving environments. Existing works depict that (i) PM still primarily focuses on offline analysis, and (ii) the assessment of concept drift techniques in processes is cumbersome due to the lack of common evaluation protocol, datasets, and metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信