热弹性非线性阻尼Timoshenko系统的下界和最优性

Asymptot. Anal. Pub Date : 2017-03-07 DOI:10.3233/ASY-191519
A. Bchatnia, Sabrine Chebbi, M. Hamouda, A. Soufyane
{"title":"热弹性非线性阻尼Timoshenko系统的下界和最优性","authors":"A. Bchatnia, Sabrine Chebbi, M. Hamouda, A. Soufyane","doi":"10.3233/ASY-191519","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a vibrating nonlinear Timoshenko system with thermoelasticity with second sound. We first investigate the strong stability of this system, then we devote our efforts to obtain the strong lower energy estimates using Alabau--Boussouira's energy comparison principle introduced in \\cite{2} (see also \\cite{alabau}). One of the main advantages of these results is that they allows us to prove the optimality of the asymptotic results (as $t\\rightarrow \\infty$) obtained in \\cite{ali}. We also extend to our model the nice results achieved in \\cite{alabau} for the case of nonlinearly damped Timoshenko system with thermoelasticity. The optimality of our results is also investigated through some explicit examples of the nonlinear damping term. The proof of our results relies on the approach in \\cite{AB1, AB2}.","PeriodicalId":8603,"journal":{"name":"Asymptot. Anal.","volume":"19 1","pages":"73-91"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Lower bound and optimality for a nonlinearly damped Timoshenko system with thermoelasticity\",\"authors\":\"A. Bchatnia, Sabrine Chebbi, M. Hamouda, A. Soufyane\",\"doi\":\"10.3233/ASY-191519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a vibrating nonlinear Timoshenko system with thermoelasticity with second sound. We first investigate the strong stability of this system, then we devote our efforts to obtain the strong lower energy estimates using Alabau--Boussouira's energy comparison principle introduced in \\\\cite{2} (see also \\\\cite{alabau}). One of the main advantages of these results is that they allows us to prove the optimality of the asymptotic results (as $t\\\\rightarrow \\\\infty$) obtained in \\\\cite{ali}. We also extend to our model the nice results achieved in \\\\cite{alabau} for the case of nonlinearly damped Timoshenko system with thermoelasticity. The optimality of our results is also investigated through some explicit examples of the nonlinear damping term. The proof of our results relies on the approach in \\\\cite{AB1, AB2}.\",\"PeriodicalId\":8603,\"journal\":{\"name\":\"Asymptot. Anal.\",\"volume\":\"19 1\",\"pages\":\"73-91\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptot. Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ASY-191519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptot. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ASY-191519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了一类具有二阶声的非线性热弹性Timoshenko振动系统。我们首先研究了该系统的强稳定性,然后我们致力于利用\cite{2}中介绍的Alabau—Boussouira的能量比较原理获得强低能量估计(另见\cite{alabau})。这些结果的主要优点之一是,它们使我们能够证明在\cite{ali}中得到的渐近结果(如$t\rightarrow \infty$)的最优性。对于热弹性非线性阻尼Timoshenko系统,我们也将在\cite{alabau}中取得的良好结果推广到我们的模型中。通过一些非线性阻尼项的显式例子,研究了结果的最优性。我们的结果的证明依赖于\cite{AB1, AB2}中的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lower bound and optimality for a nonlinearly damped Timoshenko system with thermoelasticity
In this paper, we consider a vibrating nonlinear Timoshenko system with thermoelasticity with second sound. We first investigate the strong stability of this system, then we devote our efforts to obtain the strong lower energy estimates using Alabau--Boussouira's energy comparison principle introduced in \cite{2} (see also \cite{alabau}). One of the main advantages of these results is that they allows us to prove the optimality of the asymptotic results (as $t\rightarrow \infty$) obtained in \cite{ali}. We also extend to our model the nice results achieved in \cite{alabau} for the case of nonlinearly damped Timoshenko system with thermoelasticity. The optimality of our results is also investigated through some explicit examples of the nonlinear damping term. The proof of our results relies on the approach in \cite{AB1, AB2}.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信