{"title":"纯氮化硼和掺杂氮化硼纳米团簇对来曲唑药物的传感:密度泛函理论计算","authors":"A. Behmanesh, F. Salimi, G. Ebrahimzadeh-Rajaei","doi":"10.34172/ps.2022.35","DOIUrl":null,"url":null,"abstract":"Background: Letrozole is a non-steroidal drug utilized as a treatment of hormone-sensitive breast cancer. It has been shown that letrozole has harmful side effects. Therefore, it seems necessary to design a letrozole drug sensor. In this work, we scrutinized the sensing properties of the B30N30, AlB29N30, and GaB29N30 nanoclusters toward the letrozole drug in various adsorption sites. Methods: Investigations were done using the density functional theory (DFT) calculation with the B3PW91/6-311G(d, p) level of theory. The time-dependent density functional theory (TD-DFT) calculations were used to investigate Ultraviolet-visible (UV-vis) spectrums with the same level of theory. Results: The adsorption energy of B30N30, AlB29N30, and GaB29N30 in the most stable complexes were calculated at -16.81, -34.62, and -27.41 kcal mol-1, respectively. The results obtained from the study of electronic properties showed a high sensitivity for the detection of letrozole in B30N30 compared to AlB29N30 and GaB29N30. The calculated recovery time for the B30N30 is 0.13 × 10-5 s, which indicates a very short recovery time. The UV-vis spectrums showed that the letrozole/B30N30 exhibits shift toward the higher wavelengths (red shift). Conclusion: Therefore, these results showed that the B30N30 is a good candidate for identifying letrozole. Further, B30N30 would be more effective than AlB29N30 and GaB29N30 due to the simple synthesis.","PeriodicalId":31004,"journal":{"name":"Infarma Pharmaceutical Sciences","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensing of letrozole drug by pure and doped boron nitride nanoclusters: density functional theory calculation\",\"authors\":\"A. Behmanesh, F. Salimi, G. Ebrahimzadeh-Rajaei\",\"doi\":\"10.34172/ps.2022.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Letrozole is a non-steroidal drug utilized as a treatment of hormone-sensitive breast cancer. It has been shown that letrozole has harmful side effects. Therefore, it seems necessary to design a letrozole drug sensor. In this work, we scrutinized the sensing properties of the B30N30, AlB29N30, and GaB29N30 nanoclusters toward the letrozole drug in various adsorption sites. Methods: Investigations were done using the density functional theory (DFT) calculation with the B3PW91/6-311G(d, p) level of theory. The time-dependent density functional theory (TD-DFT) calculations were used to investigate Ultraviolet-visible (UV-vis) spectrums with the same level of theory. Results: The adsorption energy of B30N30, AlB29N30, and GaB29N30 in the most stable complexes were calculated at -16.81, -34.62, and -27.41 kcal mol-1, respectively. The results obtained from the study of electronic properties showed a high sensitivity for the detection of letrozole in B30N30 compared to AlB29N30 and GaB29N30. The calculated recovery time for the B30N30 is 0.13 × 10-5 s, which indicates a very short recovery time. The UV-vis spectrums showed that the letrozole/B30N30 exhibits shift toward the higher wavelengths (red shift). Conclusion: Therefore, these results showed that the B30N30 is a good candidate for identifying letrozole. Further, B30N30 would be more effective than AlB29N30 and GaB29N30 due to the simple synthesis.\",\"PeriodicalId\":31004,\"journal\":{\"name\":\"Infarma Pharmaceutical Sciences\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infarma Pharmaceutical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34172/ps.2022.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infarma Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/ps.2022.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Sensing of letrozole drug by pure and doped boron nitride nanoclusters: density functional theory calculation
Background: Letrozole is a non-steroidal drug utilized as a treatment of hormone-sensitive breast cancer. It has been shown that letrozole has harmful side effects. Therefore, it seems necessary to design a letrozole drug sensor. In this work, we scrutinized the sensing properties of the B30N30, AlB29N30, and GaB29N30 nanoclusters toward the letrozole drug in various adsorption sites. Methods: Investigations were done using the density functional theory (DFT) calculation with the B3PW91/6-311G(d, p) level of theory. The time-dependent density functional theory (TD-DFT) calculations were used to investigate Ultraviolet-visible (UV-vis) spectrums with the same level of theory. Results: The adsorption energy of B30N30, AlB29N30, and GaB29N30 in the most stable complexes were calculated at -16.81, -34.62, and -27.41 kcal mol-1, respectively. The results obtained from the study of electronic properties showed a high sensitivity for the detection of letrozole in B30N30 compared to AlB29N30 and GaB29N30. The calculated recovery time for the B30N30 is 0.13 × 10-5 s, which indicates a very short recovery time. The UV-vis spectrums showed that the letrozole/B30N30 exhibits shift toward the higher wavelengths (red shift). Conclusion: Therefore, these results showed that the B30N30 is a good candidate for identifying letrozole. Further, B30N30 would be more effective than AlB29N30 and GaB29N30 due to the simple synthesis.