符号堆动态变换的推理

Time Pub Date : 2022-01-01 DOI:10.4230/LIPIcs.TIME.2022.9
N. Peltier
{"title":"符号堆动态变换的推理","authors":"N. Peltier","doi":"10.4230/LIPIcs.TIME.2022.9","DOIUrl":null,"url":null,"abstract":"Building on previous results concerning the decidability of the satisfiability and entailment problems for separation logic formulas with inductively defined predicates, we devise a proof procedure to reason on dynamic transformations of memory heaps. The initial state of the system is described by a separation logic formula of some particular form, its evolution is modeled by a finite transition system and the expected property is given as a linear temporal logic formula built over assertions in separation logic.","PeriodicalId":75226,"journal":{"name":"Time","volume":"16 1","pages":"9:1-9:20"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reasoning on Dynamic Transformations of Symbolic Heaps\",\"authors\":\"N. Peltier\",\"doi\":\"10.4230/LIPIcs.TIME.2022.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Building on previous results concerning the decidability of the satisfiability and entailment problems for separation logic formulas with inductively defined predicates, we devise a proof procedure to reason on dynamic transformations of memory heaps. The initial state of the system is described by a separation logic formula of some particular form, its evolution is modeled by a finite transition system and the expected property is given as a linear temporal logic formula built over assertions in separation logic.\",\"PeriodicalId\":75226,\"journal\":{\"name\":\"Time\",\"volume\":\"16 1\",\"pages\":\"9:1-9:20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Time\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.TIME.2022.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Time","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.TIME.2022.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在前人关于具有归纳定义谓词的分离逻辑公式的可满足性和蕴涵问题的可判定性的研究成果的基础上,我们设计了一个证明过程来推理内存堆的动态变换。系统的初始状态用某种特定形式的分离逻辑公式来描述,系统的演化用有限过渡系统来建模,期望的性质用建立在分离逻辑断言之上的线性时间逻辑公式来给出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reasoning on Dynamic Transformations of Symbolic Heaps
Building on previous results concerning the decidability of the satisfiability and entailment problems for separation logic formulas with inductively defined predicates, we devise a proof procedure to reason on dynamic transformations of memory heaps. The initial state of the system is described by a separation logic formula of some particular form, its evolution is modeled by a finite transition system and the expected property is given as a linear temporal logic formula built over assertions in separation logic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信