{"title":"符号堆动态变换的推理","authors":"N. Peltier","doi":"10.4230/LIPIcs.TIME.2022.9","DOIUrl":null,"url":null,"abstract":"Building on previous results concerning the decidability of the satisfiability and entailment problems for separation logic formulas with inductively defined predicates, we devise a proof procedure to reason on dynamic transformations of memory heaps. The initial state of the system is described by a separation logic formula of some particular form, its evolution is modeled by a finite transition system and the expected property is given as a linear temporal logic formula built over assertions in separation logic.","PeriodicalId":75226,"journal":{"name":"Time","volume":"16 1","pages":"9:1-9:20"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reasoning on Dynamic Transformations of Symbolic Heaps\",\"authors\":\"N. Peltier\",\"doi\":\"10.4230/LIPIcs.TIME.2022.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Building on previous results concerning the decidability of the satisfiability and entailment problems for separation logic formulas with inductively defined predicates, we devise a proof procedure to reason on dynamic transformations of memory heaps. The initial state of the system is described by a separation logic formula of some particular form, its evolution is modeled by a finite transition system and the expected property is given as a linear temporal logic formula built over assertions in separation logic.\",\"PeriodicalId\":75226,\"journal\":{\"name\":\"Time\",\"volume\":\"16 1\",\"pages\":\"9:1-9:20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Time\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.TIME.2022.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Time","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.TIME.2022.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reasoning on Dynamic Transformations of Symbolic Heaps
Building on previous results concerning the decidability of the satisfiability and entailment problems for separation logic formulas with inductively defined predicates, we devise a proof procedure to reason on dynamic transformations of memory heaps. The initial state of the system is described by a separation logic formula of some particular form, its evolution is modeled by a finite transition system and the expected property is given as a linear temporal logic formula built over assertions in separation logic.