开放MPI中gpu感知的非连续数据移动

Wei Wu, G. Bosilca, Rolf Vandevaart, Sylvain Jeaugey, J. Dongarra
{"title":"开放MPI中gpu感知的非连续数据移动","authors":"Wei Wu, G. Bosilca, Rolf Vandevaart, Sylvain Jeaugey, J. Dongarra","doi":"10.1145/2907294.2907317","DOIUrl":null,"url":null,"abstract":"Due to better parallel density and power efficiency, GPUs have become more popular for use in scientific applica- tions. Many of these applications are based on the ubiquitous Message Passing Interface (MPI) programming paradigm, and take advantage of non-contiguous memory layouts to exchange data between processes. However, support for efficient non- contiguous data movements for GPU-resident data is still in its infancy, imposing a negative impact on the overall application performance. To address this shortcoming, we present a solution where we take advantage of the inherent parallelism in the datatype pack- ing and unpacking operations. We developed a close integration between Open MPI's stack-based datatype engine, NVIDIA's Unified Memory Architecture and GPUDirect capabilities. In this design the datatype packing and unpacking operations are offloaded onto the GPU and handled by specialized GPU kernels, while the CPU remains the driver for data movements between nodes. By incorporating our design into the Open MPI library we have shown significantly better performance for non-contiguous GPU-resident data transfers on both shared and distributed memory machines.","PeriodicalId":20515,"journal":{"name":"Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing","volume":"140 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"GPU-Aware Non-contiguous Data Movement In Open MPI\",\"authors\":\"Wei Wu, G. Bosilca, Rolf Vandevaart, Sylvain Jeaugey, J. Dongarra\",\"doi\":\"10.1145/2907294.2907317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to better parallel density and power efficiency, GPUs have become more popular for use in scientific applica- tions. Many of these applications are based on the ubiquitous Message Passing Interface (MPI) programming paradigm, and take advantage of non-contiguous memory layouts to exchange data between processes. However, support for efficient non- contiguous data movements for GPU-resident data is still in its infancy, imposing a negative impact on the overall application performance. To address this shortcoming, we present a solution where we take advantage of the inherent parallelism in the datatype pack- ing and unpacking operations. We developed a close integration between Open MPI's stack-based datatype engine, NVIDIA's Unified Memory Architecture and GPUDirect capabilities. In this design the datatype packing and unpacking operations are offloaded onto the GPU and handled by specialized GPU kernels, while the CPU remains the driver for data movements between nodes. By incorporating our design into the Open MPI library we have shown significantly better performance for non-contiguous GPU-resident data transfers on both shared and distributed memory machines.\",\"PeriodicalId\":20515,\"journal\":{\"name\":\"Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing\",\"volume\":\"140 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2907294.2907317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2907294.2907317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

由于更好的并行密度和功率效率,gpu在科学应用中越来越受欢迎。这些应用程序中的许多都基于无处不在的消息传递接口(Message Passing Interface, MPI)编程范例,并利用非连续内存布局在进程之间交换数据。然而,对gpu驻留数据的高效非连续数据移动的支持仍处于起步阶段,这对整体应用程序性能造成了负面影响。为了解决这个缺点,我们提出了一个解决方案,我们利用了数据类型打包和解包操作中固有的并行性。我们开发了Open MPI基于堆栈的数据类型引擎、NVIDIA的统一内存架构和GPUDirect功能之间的紧密集成。在这种设计中,数据类型打包和解包操作被卸载到GPU上,并由专门的GPU内核处理,而CPU仍然是节点之间数据移动的驱动程序。通过将我们的设计整合到Open MPI库中,我们已经在共享和分布式内存机器上显示了更好的非连续gpu驻留数据传输性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GPU-Aware Non-contiguous Data Movement In Open MPI
Due to better parallel density and power efficiency, GPUs have become more popular for use in scientific applica- tions. Many of these applications are based on the ubiquitous Message Passing Interface (MPI) programming paradigm, and take advantage of non-contiguous memory layouts to exchange data between processes. However, support for efficient non- contiguous data movements for GPU-resident data is still in its infancy, imposing a negative impact on the overall application performance. To address this shortcoming, we present a solution where we take advantage of the inherent parallelism in the datatype pack- ing and unpacking operations. We developed a close integration between Open MPI's stack-based datatype engine, NVIDIA's Unified Memory Architecture and GPUDirect capabilities. In this design the datatype packing and unpacking operations are offloaded onto the GPU and handled by specialized GPU kernels, while the CPU remains the driver for data movements between nodes. By incorporating our design into the Open MPI library we have shown significantly better performance for non-contiguous GPU-resident data transfers on both shared and distributed memory machines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信