关于减少偏置的说明

IF 0.8 4区 数学 Q2 MATHEMATICS
C. Withers, S. Nadarajah
{"title":"关于减少偏置的说明","authors":"C. Withers, S. Nadarajah","doi":"10.5802/CRMATH.49","DOIUrl":null,"url":null,"abstract":"Let ŵ be an unbiased estimate of an unknown w ∈ R. Given a function t (w), we show how to choose a function fn (w) such that for w∗ = ŵ + fn (w), E t ( w∗ )= t (w). We illustrate this with t (w) = w a for a given constant a. For a = 2 and ŵ normal, this leads to the convolution equation cr = cr ⊗ cr . Manuscript received 10th January 2019, accepted 9th April 2020.","PeriodicalId":10620,"journal":{"name":"Comptes Rendus Mathematique","volume":"64 1","pages":"641-644"},"PeriodicalIF":0.8000,"publicationDate":"2020-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on bias reduction\",\"authors\":\"C. Withers, S. Nadarajah\",\"doi\":\"10.5802/CRMATH.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let ŵ be an unbiased estimate of an unknown w ∈ R. Given a function t (w), we show how to choose a function fn (w) such that for w∗ = ŵ + fn (w), E t ( w∗ )= t (w). We illustrate this with t (w) = w a for a given constant a. For a = 2 and ŵ normal, this leads to the convolution equation cr = cr ⊗ cr . Manuscript received 10th January 2019, accepted 9th April 2020.\",\"PeriodicalId\":10620,\"journal\":{\"name\":\"Comptes Rendus Mathematique\",\"volume\":\"64 1\",\"pages\":\"641-644\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Mathematique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/CRMATH.49\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mathematique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/CRMATH.49","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设´´是未知w∈r的无偏估计。给定一个函数t (w),我们展示如何选择一个函数fn (w),使得对于w∗=´´+ fn (w), E t (w∗)= t (w)。对于给定的常数a,我们用t (w) = w a来说明这一点。对于a = 2和´正态,这导致卷积方程cr = cr⊗cr。收稿日期2019年1月10日,收稿日期2020年4月9日。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on bias reduction
Let ŵ be an unbiased estimate of an unknown w ∈ R. Given a function t (w), we show how to choose a function fn (w) such that for w∗ = ŵ + fn (w), E t ( w∗ )= t (w). We illustrate this with t (w) = w a for a given constant a. For a = 2 and ŵ normal, this leads to the convolution equation cr = cr ⊗ cr . Manuscript received 10th January 2019, accepted 9th April 2020.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
115
审稿时长
16.6 weeks
期刊介绍: The Comptes Rendus - Mathématique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, … Articles are original notes that briefly describe an important discovery or result. The articles are written in French or English. The journal also publishes review papers, thematic issues and texts reflecting the activity of Académie des sciences in the field of Mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信