A. Kostic, Z. Petrovic, Zoran S. Pucanovic, Maja Roslavcev
{"title":"关于矩阵环的广义强Nil-Clean性质","authors":"A. Kostic, Z. Petrovic, Zoran S. Pucanovic, Maja Roslavcev","doi":"10.1142/s1005386721000481","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be an associative unital ring and not necessarily commutative. We analyze conditions under which every [Formula: see text] matrix [Formula: see text] over [Formula: see text] is expressible as a sum [Formula: see text] of (commuting) idempotent matrices [Formula: see text] and a nilpotent matrix [Formula: see text].","PeriodicalId":50958,"journal":{"name":"Algebra Colloquium","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Generalized Strongly Nil-Clean Property of Matrix Rings\",\"authors\":\"A. Kostic, Z. Petrovic, Zoran S. Pucanovic, Maja Roslavcev\",\"doi\":\"10.1142/s1005386721000481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] be an associative unital ring and not necessarily commutative. We analyze conditions under which every [Formula: see text] matrix [Formula: see text] over [Formula: see text] is expressible as a sum [Formula: see text] of (commuting) idempotent matrices [Formula: see text] and a nilpotent matrix [Formula: see text].\",\"PeriodicalId\":50958,\"journal\":{\"name\":\"Algebra Colloquium\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Colloquium\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386721000481\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Colloquium","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386721000481","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the Generalized Strongly Nil-Clean Property of Matrix Rings
Let [Formula: see text] be an associative unital ring and not necessarily commutative. We analyze conditions under which every [Formula: see text] matrix [Formula: see text] over [Formula: see text] is expressible as a sum [Formula: see text] of (commuting) idempotent matrices [Formula: see text] and a nilpotent matrix [Formula: see text].
期刊介绍:
Algebra Colloquium is an international mathematical journal founded at the beginning of 1994. It is edited by the Academy of Mathematics & Systems Science, Chinese Academy of Sciences, jointly with Suzhou University, and published quarterly in English in every March, June, September and December. Algebra Colloquium carries original research articles of high level in the field of pure and applied algebra. Papers from related areas which have applications to algebra are also considered for publication. This journal aims to reflect the latest developments in algebra and promote international academic exchanges.