IF 1 Q1 MATHEMATICS
O. Fedunyk-Yaremchuk, S. Hembars’ka
{"title":"Best orthogonal trigonometric approximations of the Nikol'skii-Besov-type classes of periodic functions of one and several variables","authors":"O. Fedunyk-Yaremchuk, S. Hembars’ka","doi":"10.15330/cmp.14.1.171-184","DOIUrl":null,"url":null,"abstract":"We obtained the exact order estimates of the best orthogonal trigonometric approximations of periodic functions of one and several variables from the Nikol'skii-Besov-type classes $B^{\\omega}_{1,\\theta}$ ($B^{\\Omega}_{1,\\theta}$ in the multivariate case $d\\geq2$) in the space $B_{\\infty,1}$. We observe that in the multivariate case the orders of mentioned approximation characteristics of the functional classes $B^{\\Omega}_{1,\\theta}$ are realized by their approximations by step hyperbolic Fourier sums that contain the necessary number of harmonics. In the univariate case, an optimal in the sense of order estimates for the best orthogonal trigonometric approximations of the corresponding functional classes are the ordinary partial sums of their Fourier series. As a consequence of the obtained results, the exact order estimates of the orthowidths of the classes $B^{\\omega}_{1,\\theta}$ ($B^{\\Omega}_{1,\\theta}$ for $d\\geq2$) in the space $B_{\\infty,1}$ are also established. Besides, we note that in the univariate case, in contrast to the multivariate one, the estimates of the considered approximation characteristics do not depend on the parameter $\\theta$.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.14.1.171-184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们从空间$B_{\infty,1}$中的Nikol'skii- besov型类$B^{\omega}_{1,\theta}$(多元情况下为$B^{\Omega}_{1,\theta}$$d\geq2$)中获得了单变量和多变量周期函数的最佳正交三角逼近的精确阶估计。我们观察到,在多元情况下,上述泛函类$B^{\Omega}_{1,\theta}$的近似特征的阶数是通过阶跃双曲傅立叶和逼近来实现的,其中包含必要数量的谐波。在单变量情况下,相应泛函类的最佳正交三角近似在序估计意义上的最优是它们的傅里叶级数的普通部分和。根据得到的结果,还建立了空间$B_{\infty,1}$中类别$B^{\omega}_{1,\theta}$ ($d\geq2$为$B^{\Omega}_{1,\theta}$)正交宽度的精确阶估计。此外,我们注意到,在单变量情况下,与多变量情况相反,所考虑的近似特性的估计不依赖于参数$\theta$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Best orthogonal trigonometric approximations of the Nikol'skii-Besov-type classes of periodic functions of one and several variables
We obtained the exact order estimates of the best orthogonal trigonometric approximations of periodic functions of one and several variables from the Nikol'skii-Besov-type classes $B^{\omega}_{1,\theta}$ ($B^{\Omega}_{1,\theta}$ in the multivariate case $d\geq2$) in the space $B_{\infty,1}$. We observe that in the multivariate case the orders of mentioned approximation characteristics of the functional classes $B^{\Omega}_{1,\theta}$ are realized by their approximations by step hyperbolic Fourier sums that contain the necessary number of harmonics. In the univariate case, an optimal in the sense of order estimates for the best orthogonal trigonometric approximations of the corresponding functional classes are the ordinary partial sums of their Fourier series. As a consequence of the obtained results, the exact order estimates of the orthowidths of the classes $B^{\omega}_{1,\theta}$ ($B^{\Omega}_{1,\theta}$ for $d\geq2$) in the space $B_{\infty,1}$ are also established. Besides, we note that in the univariate case, in contrast to the multivariate one, the estimates of the considered approximation characteristics do not depend on the parameter $\theta$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信