Thomas Bourgeat, Clément Pit-Claudel, A. Chlipala, Arvind
{"title":"Bluespec的本质是:基于规则的硬件设计的核心语言","authors":"Thomas Bourgeat, Clément Pit-Claudel, A. Chlipala, Arvind","doi":"10.1145/3385412.3385965","DOIUrl":null,"url":null,"abstract":"The Bluespec hardware-description language presents a significantly higher-level view than hardware engineers are used to, exposing a simpler concurrency model that promotes formal proof, without compromising on performance of compiled circuits. Unfortunately, the cost model of Bluespec has been unclear, with performance details depending on a mix of user hints and opaque static analysis of potential concurrency conflicts within a design. In this paper we present Koika, a derivative of Bluespec that preserves its desirable properties and yet gives direct control over the scheduling decisions that determine performance. Koika has a novel and deterministic operational semantics that uses dynamic analysis to avoid concurrency anomalies. Our implementation includes Coq definitions of syntax, semantics, key metatheorems, and a verified compiler to circuits. We argue that most of the extra circuitry required for dynamic analysis can be eliminated by compile-time BSV-style static analysis.","PeriodicalId":20580,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"The essence of Bluespec: a core language for rule-based hardware design\",\"authors\":\"Thomas Bourgeat, Clément Pit-Claudel, A. Chlipala, Arvind\",\"doi\":\"10.1145/3385412.3385965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Bluespec hardware-description language presents a significantly higher-level view than hardware engineers are used to, exposing a simpler concurrency model that promotes formal proof, without compromising on performance of compiled circuits. Unfortunately, the cost model of Bluespec has been unclear, with performance details depending on a mix of user hints and opaque static analysis of potential concurrency conflicts within a design. In this paper we present Koika, a derivative of Bluespec that preserves its desirable properties and yet gives direct control over the scheduling decisions that determine performance. Koika has a novel and deterministic operational semantics that uses dynamic analysis to avoid concurrency anomalies. Our implementation includes Coq definitions of syntax, semantics, key metatheorems, and a verified compiler to circuits. We argue that most of the extra circuitry required for dynamic analysis can be eliminated by compile-time BSV-style static analysis.\",\"PeriodicalId\":20580,\"journal\":{\"name\":\"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3385412.3385965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3385412.3385965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The essence of Bluespec: a core language for rule-based hardware design
The Bluespec hardware-description language presents a significantly higher-level view than hardware engineers are used to, exposing a simpler concurrency model that promotes formal proof, without compromising on performance of compiled circuits. Unfortunately, the cost model of Bluespec has been unclear, with performance details depending on a mix of user hints and opaque static analysis of potential concurrency conflicts within a design. In this paper we present Koika, a derivative of Bluespec that preserves its desirable properties and yet gives direct control over the scheduling decisions that determine performance. Koika has a novel and deterministic operational semantics that uses dynamic analysis to avoid concurrency anomalies. Our implementation includes Coq definitions of syntax, semantics, key metatheorems, and a verified compiler to circuits. We argue that most of the extra circuitry required for dynamic analysis can be eliminated by compile-time BSV-style static analysis.