实时语义分割的双流分割网络

Changyuan Zhong, Zelin Hu, Miao Li, Hualong Li, Xuanjiang Yang, Fei Liu
{"title":"实时语义分割的双流分割网络","authors":"Changyuan Zhong, Zelin Hu, Miao Li, Hualong Li, Xuanjiang Yang, Fei Liu","doi":"10.1109/ICIVC50857.2020.9177439","DOIUrl":null,"url":null,"abstract":"Modern real-time segmentation methods employ two-branch framework to achieve good speed and accuracy trade-off. However, we observe that low-level features coming from the shallow layers go through less processing, producing a potential semantic gap between different levels of features. Meanwhile, a rigid fusion is less effective due to the absence of consideration for two-branch framework characteristics. In this paper, we propose two novel modules: Unified Interplay Module and Separate Pyramid Pooling Module to address those two issues respectively. Based on our proposed modules, we present a novel Dual Stream Segmentation Network (DSSNet), a two-branch framework for real-time semantic segmentation. Compared with BiSeNet, our DSSNet based on ResNet18 achieves better performance 76.45% mIoU on the Cityscapes test dataset while sharing similar computation costs with BiSeNet. Furthermore, our DSSNet with ResNet34 backbone outperforms previous real-time models, achieving 78.5% mIoU on the Cityscapes test dataset with speed of 39 FPS on GTX1080Ti.","PeriodicalId":6806,"journal":{"name":"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)","volume":"46 1","pages":"144-149"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dual Stream Segmentation Network for Real-Time Semantic Segmentation\",\"authors\":\"Changyuan Zhong, Zelin Hu, Miao Li, Hualong Li, Xuanjiang Yang, Fei Liu\",\"doi\":\"10.1109/ICIVC50857.2020.9177439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern real-time segmentation methods employ two-branch framework to achieve good speed and accuracy trade-off. However, we observe that low-level features coming from the shallow layers go through less processing, producing a potential semantic gap between different levels of features. Meanwhile, a rigid fusion is less effective due to the absence of consideration for two-branch framework characteristics. In this paper, we propose two novel modules: Unified Interplay Module and Separate Pyramid Pooling Module to address those two issues respectively. Based on our proposed modules, we present a novel Dual Stream Segmentation Network (DSSNet), a two-branch framework for real-time semantic segmentation. Compared with BiSeNet, our DSSNet based on ResNet18 achieves better performance 76.45% mIoU on the Cityscapes test dataset while sharing similar computation costs with BiSeNet. Furthermore, our DSSNet with ResNet34 backbone outperforms previous real-time models, achieving 78.5% mIoU on the Cityscapes test dataset with speed of 39 FPS on GTX1080Ti.\",\"PeriodicalId\":6806,\"journal\":{\"name\":\"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)\",\"volume\":\"46 1\",\"pages\":\"144-149\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIVC50857.2020.9177439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVC50857.2020.9177439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

现代实时分割方法采用双分支框架,以达到较好的速度和精度平衡。然而,我们观察到来自浅层的低级特征经过较少的处理,从而在不同级别的特征之间产生潜在的语义差距。同时,由于没有考虑两分支框架的特征,刚性融合的效果较差。本文提出了统一交互模块和分离金字塔池模块来解决这两个问题。基于我们提出的模块,我们提出了一个新的双流分割网络(DSSNet),一个实时语义分割的双分支框架。与BiSeNet相比,我们基于ResNet18的DSSNet在cityscape测试数据集上的性能达到76.45% mIoU,计算成本与BiSeNet相近。此外,我们采用ResNet34骨干网的DSSNet优于以前的实时模型,在GTX1080Ti上以39 FPS的速度在cityscape测试数据集上实现了78.5%的mIoU。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual Stream Segmentation Network for Real-Time Semantic Segmentation
Modern real-time segmentation methods employ two-branch framework to achieve good speed and accuracy trade-off. However, we observe that low-level features coming from the shallow layers go through less processing, producing a potential semantic gap between different levels of features. Meanwhile, a rigid fusion is less effective due to the absence of consideration for two-branch framework characteristics. In this paper, we propose two novel modules: Unified Interplay Module and Separate Pyramid Pooling Module to address those two issues respectively. Based on our proposed modules, we present a novel Dual Stream Segmentation Network (DSSNet), a two-branch framework for real-time semantic segmentation. Compared with BiSeNet, our DSSNet based on ResNet18 achieves better performance 76.45% mIoU on the Cityscapes test dataset while sharing similar computation costs with BiSeNet. Furthermore, our DSSNet with ResNet34 backbone outperforms previous real-time models, achieving 78.5% mIoU on the Cityscapes test dataset with speed of 39 FPS on GTX1080Ti.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信