H. Kubota, T. Tashiro, Tsuyoshi Hiyayu, T. Chikushima, T. Fujiyoshi, R. Miyagawa, M. Onuki
{"title":"氮离子束辅助沉积形成的非晶磷化镓(a-GaP)的交流光电性","authors":"H. Kubota, T. Tashiro, Tsuyoshi Hiyayu, T. Chikushima, T. Fujiyoshi, R. Miyagawa, M. Onuki","doi":"10.1109/WCPEC.1994.520656","DOIUrl":null,"url":null,"abstract":"Because amorphous III-V compounds have various localized states that play important roles in carrier trapping and scattering centers, and strongly degrade electrical performance, the formation process for a-GaP is considered for reducing these states, effectively and selectively. We report in this paper that the valence-band tail state has successfully disappeared by using nitrogen ion-beam-assisted deposition, and then the mobility band gap has expanded to the 3 eV range. The gap states are also cleared for a-GaP:N according to accurate AC photoconductivity technique.","PeriodicalId":20517,"journal":{"name":"Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1994-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AC-photoconductivity of amorphous gallium phosphide (a-GaP) formed by nitrogen ion beam assisted deposition\",\"authors\":\"H. Kubota, T. Tashiro, Tsuyoshi Hiyayu, T. Chikushima, T. Fujiyoshi, R. Miyagawa, M. Onuki\",\"doi\":\"10.1109/WCPEC.1994.520656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because amorphous III-V compounds have various localized states that play important roles in carrier trapping and scattering centers, and strongly degrade electrical performance, the formation process for a-GaP is considered for reducing these states, effectively and selectively. We report in this paper that the valence-band tail state has successfully disappeared by using nitrogen ion-beam-assisted deposition, and then the mobility band gap has expanded to the 3 eV range. The gap states are also cleared for a-GaP:N according to accurate AC photoconductivity technique.\",\"PeriodicalId\":20517,\"journal\":{\"name\":\"Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCPEC.1994.520656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCPEC.1994.520656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
AC-photoconductivity of amorphous gallium phosphide (a-GaP) formed by nitrogen ion beam assisted deposition
Because amorphous III-V compounds have various localized states that play important roles in carrier trapping and scattering centers, and strongly degrade electrical performance, the formation process for a-GaP is considered for reducing these states, effectively and selectively. We report in this paper that the valence-band tail state has successfully disappeared by using nitrogen ion-beam-assisted deposition, and then the mobility band gap has expanded to the 3 eV range. The gap states are also cleared for a-GaP:N according to accurate AC photoconductivity technique.