分数阶p -拉普拉斯系统的Young测度存在性结果

IF 1.6 3区 数学 Q1 MATHEMATICS
Farah Balaadich, E. Azroul
{"title":"分数阶p -拉普拉斯系统的Young测度存在性结果","authors":"Farah Balaadich, E. Azroul","doi":"10.3846/mma.2022.14452","DOIUrl":null,"url":null,"abstract":"In this paper, we show the existence result of the following fractional p-Laplacian system (−∆)spu = f(x,u) in Ω, u = 0 in Rn\\Ω, for a given datum f. The existence of weak solutions is obtained by using the theory of Young measures.","PeriodicalId":49861,"journal":{"name":"Mathematical Modelling and Analysis","volume":"95 1","pages":"232-241"},"PeriodicalIF":1.6000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence Results for fractional P-Laplacian Systems via Young Measures\",\"authors\":\"Farah Balaadich, E. Azroul\",\"doi\":\"10.3846/mma.2022.14452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we show the existence result of the following fractional p-Laplacian system (−∆)spu = f(x,u) in Ω, u = 0 in Rn\\\\Ω, for a given datum f. The existence of weak solutions is obtained by using the theory of Young measures.\",\"PeriodicalId\":49861,\"journal\":{\"name\":\"Mathematical Modelling and Analysis\",\"volume\":\"95 1\",\"pages\":\"232-241\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3846/mma.2022.14452\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2022.14452","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了给定基准f下分数阶p-拉普拉斯系统(-∆)spu = f(x,u)在Ω中,u = 0在Rn\Ω中,u = 0的存在性结果。利用杨氏测度理论得到了弱解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence Results for fractional P-Laplacian Systems via Young Measures
In this paper, we show the existence result of the following fractional p-Laplacian system (−∆)spu = f(x,u) in Ω, u = 0 in Rn\Ω, for a given datum f. The existence of weak solutions is obtained by using the theory of Young measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
5.60%
发文量
28
审稿时长
4.5 months
期刊介绍: Mathematical Modelling and Analysis publishes original research on all areas of mathematical modelling and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信