Yili Kang , Peisong Li , Wangkun Cao , Mingjun Chen , Lijun You , Jiang Liu , Zhehan Lai
{"title":"水力压裂后超临界水处理对页岩基质孔隙结构改变和渗透性增强的研究","authors":"Yili Kang , Peisong Li , Wangkun Cao , Mingjun Chen , Lijun You , Jiang Liu , Zhehan Lai","doi":"10.1016/j.petlm.2022.05.002","DOIUrl":null,"url":null,"abstract":"<div><p>Shale gas reservoirs are unconventional tight gas reservoirs, in which horizontal wells and hydraulic fracturing are required to achieve commercial development. The fracture networks created by hydraulic fracturing can increase the drainage area extensively to enhance shale gas recovery. However, large volumes of fracturing fluid that is difficult to flow back to the surface and remained in the shale formation, will inevitably lead to damages of the shale formations and limit the effectiveness of stimulation. Supercritical water (SCW) treatment after hydraulic fracturing is a new method to enhance shale gas recovery by using appropriate heat treatment methods to the specific formation to convert the retained fracturing fluid into a supercritical state (at temperatures in excess of 373.946°C and pressures in excess of 22.064 MPa). An experiment was conducted to simulate the reaction between shale and SCW, and the capacity of SCW treatment to enhance the permeability of the shale was evaluated by measuring the response of the shale porosity and permeability on SCW treatment. The experimental results show that the shale porosity and permeability increase by 213.43% and 2198.37%, respectively. The pore structure alteration and permeability enhancement of the shale matrix were determined by analyzing the changes in pore structure and mineral composition after SCW treatment. The mechanisms that affect pore structure and mineral composition include oxidative catalysis decomposition of organic matters and reducing minerals, acid-catalyzed decomposition of carbonate minerals and feldspar minerals, hydrothermal catalysis induced fracture extension and cementation weakening induced fracture extension. SCW treatment converts harm into a benefit by reducing the intrusion of harmful substances into the shale formation, which will broaden the scope and scale of shale formation stimulation.</p></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405656122000451/pdfft?md5=c75b04cced6f21452f74642907fd950b&pid=1-s2.0-S2405656122000451-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Investigation of pore structure alteration and permeability enhancement of shale matrix by supercritical water treatment after hydraulic fracturing\",\"authors\":\"Yili Kang , Peisong Li , Wangkun Cao , Mingjun Chen , Lijun You , Jiang Liu , Zhehan Lai\",\"doi\":\"10.1016/j.petlm.2022.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Shale gas reservoirs are unconventional tight gas reservoirs, in which horizontal wells and hydraulic fracturing are required to achieve commercial development. The fracture networks created by hydraulic fracturing can increase the drainage area extensively to enhance shale gas recovery. However, large volumes of fracturing fluid that is difficult to flow back to the surface and remained in the shale formation, will inevitably lead to damages of the shale formations and limit the effectiveness of stimulation. Supercritical water (SCW) treatment after hydraulic fracturing is a new method to enhance shale gas recovery by using appropriate heat treatment methods to the specific formation to convert the retained fracturing fluid into a supercritical state (at temperatures in excess of 373.946°C and pressures in excess of 22.064 MPa). An experiment was conducted to simulate the reaction between shale and SCW, and the capacity of SCW treatment to enhance the permeability of the shale was evaluated by measuring the response of the shale porosity and permeability on SCW treatment. The experimental results show that the shale porosity and permeability increase by 213.43% and 2198.37%, respectively. The pore structure alteration and permeability enhancement of the shale matrix were determined by analyzing the changes in pore structure and mineral composition after SCW treatment. The mechanisms that affect pore structure and mineral composition include oxidative catalysis decomposition of organic matters and reducing minerals, acid-catalyzed decomposition of carbonate minerals and feldspar minerals, hydrothermal catalysis induced fracture extension and cementation weakening induced fracture extension. SCW treatment converts harm into a benefit by reducing the intrusion of harmful substances into the shale formation, which will broaden the scope and scale of shale formation stimulation.</p></div>\",\"PeriodicalId\":37433,\"journal\":{\"name\":\"Petroleum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405656122000451/pdfft?md5=c75b04cced6f21452f74642907fd950b&pid=1-s2.0-S2405656122000451-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405656122000451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405656122000451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Investigation of pore structure alteration and permeability enhancement of shale matrix by supercritical water treatment after hydraulic fracturing
Shale gas reservoirs are unconventional tight gas reservoirs, in which horizontal wells and hydraulic fracturing are required to achieve commercial development. The fracture networks created by hydraulic fracturing can increase the drainage area extensively to enhance shale gas recovery. However, large volumes of fracturing fluid that is difficult to flow back to the surface and remained in the shale formation, will inevitably lead to damages of the shale formations and limit the effectiveness of stimulation. Supercritical water (SCW) treatment after hydraulic fracturing is a new method to enhance shale gas recovery by using appropriate heat treatment methods to the specific formation to convert the retained fracturing fluid into a supercritical state (at temperatures in excess of 373.946°C and pressures in excess of 22.064 MPa). An experiment was conducted to simulate the reaction between shale and SCW, and the capacity of SCW treatment to enhance the permeability of the shale was evaluated by measuring the response of the shale porosity and permeability on SCW treatment. The experimental results show that the shale porosity and permeability increase by 213.43% and 2198.37%, respectively. The pore structure alteration and permeability enhancement of the shale matrix were determined by analyzing the changes in pore structure and mineral composition after SCW treatment. The mechanisms that affect pore structure and mineral composition include oxidative catalysis decomposition of organic matters and reducing minerals, acid-catalyzed decomposition of carbonate minerals and feldspar minerals, hydrothermal catalysis induced fracture extension and cementation weakening induced fracture extension. SCW treatment converts harm into a benefit by reducing the intrusion of harmful substances into the shale formation, which will broaden the scope and scale of shale formation stimulation.
期刊介绍:
Examples of appropriate topical areas that will be considered include the following: 1.comprehensive research on oil and gas reservoir (reservoir geology): -geological basis of oil and gas reservoirs -reservoir geochemistry -reservoir formation mechanism -reservoir identification methods and techniques 2.kinetics of oil and gas basins and analyses of potential oil and gas resources: -fine description factors of hydrocarbon accumulation -mechanism analysis on recovery and dynamic accumulation process -relationship between accumulation factors and the accumulation process -analysis of oil and gas potential resource 3.theories and methods for complex reservoir geophysical prospecting: -geophysical basis of deep geologic structures and background of hydrocarbon occurrence -geophysical prediction of deep and complex reservoirs -physical test analyses and numerical simulations of reservoir rocks -anisotropic medium seismic imaging theory and new technology for multiwave seismic exploration -o theories and methods for reservoir fluid geophysical identification and prediction 4.theories, methods, technology, and design for complex reservoir development: -reservoir percolation theory and application technology -field development theories and methods -theory and technology for enhancing recovery efficiency 5.working liquid for oil and gas wells and reservoir protection technology: -working chemicals and mechanics for oil and gas wells -reservoir protection technology 6.new techniques and technologies for oil and gas drilling and production: -under-balanced drilling/gas drilling -special-track well drilling -cementing and completion of oil and gas wells -engineering safety applications for oil and gas wells -new technology of fracture acidizing