视觉动力学:基于语义分割的环境建模、路径规划与控制

Cosmin Ginerica, Vlad Isofache, S. Grigorescu
{"title":"视觉动力学:基于语义分割的环境建模、路径规划与控制","authors":"Cosmin Ginerica, Vlad Isofache, S. Grigorescu","doi":"10.1109/OPTIM-ACEMP50812.2021.9590010","DOIUrl":null,"url":null,"abstract":"Autonomous driving has been a hot topic in robotics for several years. Two main approaches have been proposed in the scope of solving the autonomous driving challenge: model-based methods relying on trajectory tracking and control and model-free learning based methods, usually directly mapping input signals to control actions. In this paper, we propose a vision-dynamics approach as an enhancement of the classical model-based perception-planning-control architecture, based on a semantic segmentation learning algorithm. We use the output of the learning algorithm in the planning module of our setup as to generate better local trajectories for our controller to track. We deploy our algorithm in a real-world setup, using a Pioneer 3-DX robot that navigates the innards of a park.","PeriodicalId":32117,"journal":{"name":"Bioma","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vision Dynamics: Environment Modelling, Path Planning and Control Based on Semantic Segmentation\",\"authors\":\"Cosmin Ginerica, Vlad Isofache, S. Grigorescu\",\"doi\":\"10.1109/OPTIM-ACEMP50812.2021.9590010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous driving has been a hot topic in robotics for several years. Two main approaches have been proposed in the scope of solving the autonomous driving challenge: model-based methods relying on trajectory tracking and control and model-free learning based methods, usually directly mapping input signals to control actions. In this paper, we propose a vision-dynamics approach as an enhancement of the classical model-based perception-planning-control architecture, based on a semantic segmentation learning algorithm. We use the output of the learning algorithm in the planning module of our setup as to generate better local trajectories for our controller to track. We deploy our algorithm in a real-world setup, using a Pioneer 3-DX robot that navigates the innards of a park.\",\"PeriodicalId\":32117,\"journal\":{\"name\":\"Bioma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioma\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OPTIM-ACEMP50812.2021.9590010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioma","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OPTIM-ACEMP50812.2021.9590010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

几年来,自动驾驶一直是机器人领域的热门话题。在解决自动驾驶挑战的范围内,已经提出了两种主要方法:基于模型的方法,依赖于轨迹跟踪和控制,以及基于无模型学习的方法,通常直接将输入信号映射到控制动作。在本文中,我们提出了一种基于语义分割学习算法的视觉动力学方法,作为经典的基于模型的感知-计划-控制体系结构的增强。我们在设置的规划模块中使用学习算法的输出来生成更好的局部轨迹供控制器跟踪。我们将我们的算法应用到现实世界中,使用先锋3-DX机器人在公园内部导航。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vision Dynamics: Environment Modelling, Path Planning and Control Based on Semantic Segmentation
Autonomous driving has been a hot topic in robotics for several years. Two main approaches have been proposed in the scope of solving the autonomous driving challenge: model-based methods relying on trajectory tracking and control and model-free learning based methods, usually directly mapping input signals to control actions. In this paper, we propose a vision-dynamics approach as an enhancement of the classical model-based perception-planning-control architecture, based on a semantic segmentation learning algorithm. We use the output of the learning algorithm in the planning module of our setup as to generate better local trajectories for our controller to track. We deploy our algorithm in a real-world setup, using a Pioneer 3-DX robot that navigates the innards of a park.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
20
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信