扭曲等变k理论的一个分解

J. M. G'omez, J. Ram'irez
{"title":"扭曲等变k理论的一个分解","authors":"J. M. G'omez, J. Ram'irez","doi":"10.3842/SIGMA.2021.041","DOIUrl":null,"url":null,"abstract":"For $G$ a finite group, a normalized 2-cocycle $\\alpha\\in Z^{2}(G,\\mathbb{S}^{1})$ and $X$ a $G$-space on which a normal subgroup $A$ acts trivially, we show that the $\\alpha$-twisted $G$-equivariant $K$-theory of $X$ decomposes as a direct sum of twisted equivariant $K$-theories of $X$ parametrized by the orbits of an action of $G$ on the set of irreducible $\\alpha$-projective representations of $A$. This generalizes the decomposition obtained by Gomez and Uribe for equivariant $K$-theory. We also explore some examples of this decomposition for the particular case of the dihedral groups $D_{2n}$ with $n\\ge 1$ an even integer.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Decomposition of Twisted Equivariant K-Theory\",\"authors\":\"J. M. G'omez, J. Ram'irez\",\"doi\":\"10.3842/SIGMA.2021.041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For $G$ a finite group, a normalized 2-cocycle $\\\\alpha\\\\in Z^{2}(G,\\\\mathbb{S}^{1})$ and $X$ a $G$-space on which a normal subgroup $A$ acts trivially, we show that the $\\\\alpha$-twisted $G$-equivariant $K$-theory of $X$ decomposes as a direct sum of twisted equivariant $K$-theories of $X$ parametrized by the orbits of an action of $G$ on the set of irreducible $\\\\alpha$-projective representations of $A$. This generalizes the decomposition obtained by Gomez and Uribe for equivariant $K$-theory. We also explore some examples of this decomposition for the particular case of the dihedral groups $D_{2n}$ with $n\\\\ge 1$ an even integer.\",\"PeriodicalId\":8433,\"journal\":{\"name\":\"arXiv: Algebraic Topology\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3842/SIGMA.2021.041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/SIGMA.2021.041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

因为 $G$ 一个有限群,一个标准化的2-环 $\alpha\in Z^{2}(G,\mathbb{S}^{1})$ 和 $X$ a $G$- normal子组所在的空间 $A$ 行为微不足道,我们表明 $\alpha$扭曲的 $G$-等变的 $K$-理论 $X$ 分解为扭曲等变的直和 $K$-理论 $X$ 的作用轨道参数化 $G$ 在不可约集合上 $\alpha$的投影表示 $A$. 这推广了Gomez和Uribe对等变问题的分解 $K$-理论。我们还探讨了这种分解的一些例子,用于二面体基团的特殊情况 $D_{2n}$ 有 $n\ge 1$ 一个偶数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Decomposition of Twisted Equivariant K-Theory
For $G$ a finite group, a normalized 2-cocycle $\alpha\in Z^{2}(G,\mathbb{S}^{1})$ and $X$ a $G$-space on which a normal subgroup $A$ acts trivially, we show that the $\alpha$-twisted $G$-equivariant $K$-theory of $X$ decomposes as a direct sum of twisted equivariant $K$-theories of $X$ parametrized by the orbits of an action of $G$ on the set of irreducible $\alpha$-projective representations of $A$. This generalizes the decomposition obtained by Gomez and Uribe for equivariant $K$-theory. We also explore some examples of this decomposition for the particular case of the dihedral groups $D_{2n}$ with $n\ge 1$ an even integer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信