{"title":"天气预报和气候模拟的拉格朗日-拉普拉斯积分方案","authors":"P. Lynch","doi":"10.3390/meteorology1040023","DOIUrl":null,"url":null,"abstract":"A time integration scheme based on semi-Lagrangian advection and Laplace transform adjustment has been implemented in a baroclinic primitive equation model. The semi-Lagrangian scheme makes it possible to use large time steps. However, errors arising from the semi-implicit scheme increase with the time step size. In contrast, the errors using the Laplace transform adjustment remain relatively small for typical time steps used with semi-Lagrangian advection. Numerical experiments confirm the superior performance of the Laplace transform scheme relative to the semi-implicit reference model. The algorithmic complexity of the scheme is comparable to the reference model, making it computationally competitive, and indicating its potential for integrating weather and climate prediction models.","PeriodicalId":100061,"journal":{"name":"Agricultural Meteorology","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Lagrange–Laplace Integration Scheme for Weather Prediction and Climate Modelling\",\"authors\":\"P. Lynch\",\"doi\":\"10.3390/meteorology1040023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A time integration scheme based on semi-Lagrangian advection and Laplace transform adjustment has been implemented in a baroclinic primitive equation model. The semi-Lagrangian scheme makes it possible to use large time steps. However, errors arising from the semi-implicit scheme increase with the time step size. In contrast, the errors using the Laplace transform adjustment remain relatively small for typical time steps used with semi-Lagrangian advection. Numerical experiments confirm the superior performance of the Laplace transform scheme relative to the semi-implicit reference model. The algorithmic complexity of the scheme is comparable to the reference model, making it computationally competitive, and indicating its potential for integrating weather and climate prediction models.\",\"PeriodicalId\":100061,\"journal\":{\"name\":\"Agricultural Meteorology\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural Meteorology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/meteorology1040023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Meteorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/meteorology1040023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Lagrange–Laplace Integration Scheme for Weather Prediction and Climate Modelling
A time integration scheme based on semi-Lagrangian advection and Laplace transform adjustment has been implemented in a baroclinic primitive equation model. The semi-Lagrangian scheme makes it possible to use large time steps. However, errors arising from the semi-implicit scheme increase with the time step size. In contrast, the errors using the Laplace transform adjustment remain relatively small for typical time steps used with semi-Lagrangian advection. Numerical experiments confirm the superior performance of the Laplace transform scheme relative to the semi-implicit reference model. The algorithmic complexity of the scheme is comparable to the reference model, making it computationally competitive, and indicating its potential for integrating weather and climate prediction models.