{"title":"多层结构电阻抗层析成像的精细稳定性估计","authors":"Haigang Li, Jenn-Nan Wang, Ling Wang","doi":"10.3934/ipi.2021048","DOIUrl":null,"url":null,"abstract":"In this paper we study the inverse problem of determining an electrical inclusion in a multi-layer composite from boundary measurements in 2D. We assume the conductivities in different layers are different and derive a stability estimate for the linearized map with explicit formulae on the conductivity and the thickness of each layer. Intuitively, if an inclusion is surrounded by a highly conductive layer, then, in view of \"the principle of the least work\", the current will take a path in the highly conductive layer and disregard the existence of the inclusion. Consequently, a worse stability of identifying the hidden inclusion is expected in this case. Our estimates indeed show that the ill-posedness of the problem increases as long as the conductivity of some layer becomes large. This work is an extension of the previous result by Nagayasu-Uhlmann-Wang[15], where a depth-dependent estimate is derived when an inclusion is deeply hidden in a conductor. Estimates in this work also show the influence of the depth of the inclusion.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":"74 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Refined stability estimates in electrical impedance tomography with multi-layer structure\",\"authors\":\"Haigang Li, Jenn-Nan Wang, Ling Wang\",\"doi\":\"10.3934/ipi.2021048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the inverse problem of determining an electrical inclusion in a multi-layer composite from boundary measurements in 2D. We assume the conductivities in different layers are different and derive a stability estimate for the linearized map with explicit formulae on the conductivity and the thickness of each layer. Intuitively, if an inclusion is surrounded by a highly conductive layer, then, in view of \\\"the principle of the least work\\\", the current will take a path in the highly conductive layer and disregard the existence of the inclusion. Consequently, a worse stability of identifying the hidden inclusion is expected in this case. Our estimates indeed show that the ill-posedness of the problem increases as long as the conductivity of some layer becomes large. This work is an extension of the previous result by Nagayasu-Uhlmann-Wang[15], where a depth-dependent estimate is derived when an inclusion is deeply hidden in a conductor. Estimates in this work also show the influence of the depth of the inclusion.\",\"PeriodicalId\":50274,\"journal\":{\"name\":\"Inverse Problems and Imaging\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems and Imaging\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/ipi.2021048\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/ipi.2021048","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Refined stability estimates in electrical impedance tomography with multi-layer structure
In this paper we study the inverse problem of determining an electrical inclusion in a multi-layer composite from boundary measurements in 2D. We assume the conductivities in different layers are different and derive a stability estimate for the linearized map with explicit formulae on the conductivity and the thickness of each layer. Intuitively, if an inclusion is surrounded by a highly conductive layer, then, in view of "the principle of the least work", the current will take a path in the highly conductive layer and disregard the existence of the inclusion. Consequently, a worse stability of identifying the hidden inclusion is expected in this case. Our estimates indeed show that the ill-posedness of the problem increases as long as the conductivity of some layer becomes large. This work is an extension of the previous result by Nagayasu-Uhlmann-Wang[15], where a depth-dependent estimate is derived when an inclusion is deeply hidden in a conductor. Estimates in this work also show the influence of the depth of the inclusion.
期刊介绍:
Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing.
This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.