通过钻杆下入LWT的裸眼测井案例研究——阿布扎比陆上油田降低风险和优化成本的新技术

Maniesh Singh, Khaleefa Al Benali, Y. Sallam, Kashif Sajeel, Fathy ElWazeer, H. A. Chaker, Maarten Propper
{"title":"通过钻杆下入LWT的裸眼测井案例研究——阿布扎比陆上油田降低风险和优化成本的新技术","authors":"Maniesh Singh, Khaleefa Al Benali, Y. Sallam, Kashif Sajeel, Fathy ElWazeer, H. A. Chaker, Maarten Propper","doi":"10.2118/193315-MS","DOIUrl":null,"url":null,"abstract":"\n The ability to measure formation petro physical properties thru drillpipe has always been a challenge. It requires unconventional approaches to remove the effects of metal and borehole fluids on both the transmitted and received logging signals. This paper will present a proven technology executed in more than 1,000 wells all over the world and a first two successful trail case study from ADNOC Onshore wells in the Middle East.\n The main objective is to acquire triple combo data (resistivity, density, neutron, gamma ray, spectral gamma ray & caliper) using the LWT conveyance and acquisition technology where there is a high risk of downhole triple combo Logging While Drilling (LWD) and or wireline (WL) tools getting stuck and the risk of losing radioactive sources.\n The new patent pending technique was executed by using a slim downhole measurement tools inside specially designed drill collars invisible to the measurement sensors. LWT collars can be used for drilling and reaming as with normal drill collars. Propagation resistivity and neutron measurements are mostly like conventional techniques in tools physics. Density and nuclear caliper are measured by modelling the responses of three detectors short, medium and long distance away from the cesium source.\n The measured LWT log data has been validated through back to back comparisons with WL & LWD) logs showing almost one to one correlation considering the effects of mud invasion due to lapsed time between runs, different wellbore condition and different depth of investigations.\n Measured caliper, resistivity, density, neutron from LWT showed respectable match with WL or LWD tool. The differences in log responses are explained by differences in tool physics, logging speeds and environmental conditions. Similarly, the computed porosity from LWT tool comparison with WL and LWT porosity has almost the same statistics. The Quality LWT data was acquired in both wells at virtually zero LIH risk and minimum extra drilling rig time.\n Introducing the new LWT technique to measure accurate Open Hole formation evaluation data from inside the drill-string is a cost-effective solution in various challenging scenarios, Exploratory/ Appraisal/ Development risky & challenging wells with unknown reservoir pressures or unsystematic depletion scenarios, complex downhole in-situ stress regimes, challenging tectonically faulted or fractured areas & unstable shales and many more, posing challenge to drill stable holes and a threat to LWD/ WL radioactive tool stuck.Unplanned deviated 8-1/2’ hole section geo-steered by MWD-GR, where at last minute triple combo is desired.","PeriodicalId":11208,"journal":{"name":"Day 2 Tue, November 13, 2018","volume":"94 10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Case Study on Open-Hole Logging While Tripping LWT Through Drill Pipes, as a New Technology for Risk Mitigation and Cost Optimization in Abu Dhabi Onshore Fields\",\"authors\":\"Maniesh Singh, Khaleefa Al Benali, Y. Sallam, Kashif Sajeel, Fathy ElWazeer, H. A. Chaker, Maarten Propper\",\"doi\":\"10.2118/193315-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The ability to measure formation petro physical properties thru drillpipe has always been a challenge. It requires unconventional approaches to remove the effects of metal and borehole fluids on both the transmitted and received logging signals. This paper will present a proven technology executed in more than 1,000 wells all over the world and a first two successful trail case study from ADNOC Onshore wells in the Middle East.\\n The main objective is to acquire triple combo data (resistivity, density, neutron, gamma ray, spectral gamma ray & caliper) using the LWT conveyance and acquisition technology where there is a high risk of downhole triple combo Logging While Drilling (LWD) and or wireline (WL) tools getting stuck and the risk of losing radioactive sources.\\n The new patent pending technique was executed by using a slim downhole measurement tools inside specially designed drill collars invisible to the measurement sensors. LWT collars can be used for drilling and reaming as with normal drill collars. Propagation resistivity and neutron measurements are mostly like conventional techniques in tools physics. Density and nuclear caliper are measured by modelling the responses of three detectors short, medium and long distance away from the cesium source.\\n The measured LWT log data has been validated through back to back comparisons with WL & LWD) logs showing almost one to one correlation considering the effects of mud invasion due to lapsed time between runs, different wellbore condition and different depth of investigations.\\n Measured caliper, resistivity, density, neutron from LWT showed respectable match with WL or LWD tool. The differences in log responses are explained by differences in tool physics, logging speeds and environmental conditions. Similarly, the computed porosity from LWT tool comparison with WL and LWT porosity has almost the same statistics. The Quality LWT data was acquired in both wells at virtually zero LIH risk and minimum extra drilling rig time.\\n Introducing the new LWT technique to measure accurate Open Hole formation evaluation data from inside the drill-string is a cost-effective solution in various challenging scenarios, Exploratory/ Appraisal/ Development risky & challenging wells with unknown reservoir pressures or unsystematic depletion scenarios, complex downhole in-situ stress regimes, challenging tectonically faulted or fractured areas & unstable shales and many more, posing challenge to drill stable holes and a threat to LWD/ WL radioactive tool stuck.Unplanned deviated 8-1/2’ hole section geo-steered by MWD-GR, where at last minute triple combo is desired.\",\"PeriodicalId\":11208,\"journal\":{\"name\":\"Day 2 Tue, November 13, 2018\",\"volume\":\"94 10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, November 13, 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/193315-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, November 13, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/193315-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

通过钻杆测量地层石油物性的能力一直是一个挑战。它需要非常规的方法来消除金属和井内流体对发送和接收测井信号的影响。本文将介绍一项在全球1000多口井中实施的成熟技术,以及ADNOC在中东陆上井的前两项成功试验案例研究。主要目标是利用LWT传输和采集技术获取三重组合数据(电阻率、密度、中子、伽马射线、谱伽马射线和井径),因为井下随钻测井(LWD)和电缆(WL)工具卡死的风险很高,并且有丢失放射源的风险。这项正在申请专利的新技术通过在特殊设计的钻铤内使用细长的井下测量工具来实现,测量传感器看不到。与普通钻铤一样,LWT钻铤可用于钻井和扩孔。传播电阻率和中子测量与工具物理中的传统技术非常相似。通过模拟离铯源近、中、远距离三个探测器的响应,测量了密度和核卡尺。实测的LWT测井数据与WL和LWD测井数据进行了连续对比,结果表明,考虑到两次下钻之间的时间间隔、不同的井筒条件和不同的调查深度所造成的泥浆侵入的影响,LWT测井数据几乎是一对一的相关性。LWT测得的卡尺、电阻率、密度、中子与WL或LWD工具吻合良好。测井响应的差异可以由工具物理、测井速度和环境条件的差异来解释。同样,LWT工具计算的孔隙度与WL和LWT孔隙度的统计数据几乎相同。在两口井中获得的Quality LWT数据几乎为零LIH风险,并且减少了额外的钻机时间。引入新的LWT技术,从钻柱内部测量准确的裸眼地层评价数据,是一种具有成本效益的解决方案,适用于各种具有挑战性的情况,包括勘探/评估/开发风险高、具有未知油藏压力或非系统枯竭情况的井、复杂的井下地应力状况、具有挑战性的构造断层或裂缝区以及不稳定的页岩等。给稳定井眼的钻取带来挑战,并对随钻随钻/随钻随钻工具的放射性卡钻造成威胁。由MWD-GR地质导向的非计划斜井8-1/2 '井段,需要在最后一刻进行三重组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Case Study on Open-Hole Logging While Tripping LWT Through Drill Pipes, as a New Technology for Risk Mitigation and Cost Optimization in Abu Dhabi Onshore Fields
The ability to measure formation petro physical properties thru drillpipe has always been a challenge. It requires unconventional approaches to remove the effects of metal and borehole fluids on both the transmitted and received logging signals. This paper will present a proven technology executed in more than 1,000 wells all over the world and a first two successful trail case study from ADNOC Onshore wells in the Middle East. The main objective is to acquire triple combo data (resistivity, density, neutron, gamma ray, spectral gamma ray & caliper) using the LWT conveyance and acquisition technology where there is a high risk of downhole triple combo Logging While Drilling (LWD) and or wireline (WL) tools getting stuck and the risk of losing radioactive sources. The new patent pending technique was executed by using a slim downhole measurement tools inside specially designed drill collars invisible to the measurement sensors. LWT collars can be used for drilling and reaming as with normal drill collars. Propagation resistivity and neutron measurements are mostly like conventional techniques in tools physics. Density and nuclear caliper are measured by modelling the responses of three detectors short, medium and long distance away from the cesium source. The measured LWT log data has been validated through back to back comparisons with WL & LWD) logs showing almost one to one correlation considering the effects of mud invasion due to lapsed time between runs, different wellbore condition and different depth of investigations. Measured caliper, resistivity, density, neutron from LWT showed respectable match with WL or LWD tool. The differences in log responses are explained by differences in tool physics, logging speeds and environmental conditions. Similarly, the computed porosity from LWT tool comparison with WL and LWT porosity has almost the same statistics. The Quality LWT data was acquired in both wells at virtually zero LIH risk and minimum extra drilling rig time. Introducing the new LWT technique to measure accurate Open Hole formation evaluation data from inside the drill-string is a cost-effective solution in various challenging scenarios, Exploratory/ Appraisal/ Development risky & challenging wells with unknown reservoir pressures or unsystematic depletion scenarios, complex downhole in-situ stress regimes, challenging tectonically faulted or fractured areas & unstable shales and many more, posing challenge to drill stable holes and a threat to LWD/ WL radioactive tool stuck.Unplanned deviated 8-1/2’ hole section geo-steered by MWD-GR, where at last minute triple combo is desired.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信