论水面多频遥感的几种可能性

IF 0.7 Q4 GEOSCIENCES, MULTIDISCIPLINARY
Yuriy A. Titchenko, V. Karaev, Yijun He
{"title":"论水面多频遥感的几种可能性","authors":"Yuriy A. Titchenko, V. Karaev, Yijun He","doi":"10.2205/2022es000795","DOIUrl":null,"url":null,"abstract":"This study is aimed at expanding the number of measured parameters to analyze the features of the formation of surface waves under the influence of wind. The paper develops an original approach to obtaining information on the variability of the short-wavelength part of the wave spectrum (examples are given for wavelengths from about 50 cm to 2 cm in 6 intervals) and the long-wave component of the wave spectrum (> 1 m) in marine conditions. Retrievable information about waves will allow studying the interaction of wind simultaneously with the short-wave and long-wave components of the wave spectrum and will be in demand by scientists involved in numerical modeling of the wave climate and interested in refining the model of near-surface wind interaction with waves. In addition, new information about the short-wave part of the wave spectrum in different wavelength ranges will improve the accuracy of near-surface wind speed retrieval from remote sensing data. This work is devoted to a theoretical analysis of slope variance retrieved from reflected acoustic pulses for different radiation frequencies depending on the near-surface wind speed and swell wave height. A study was made of the measured slope variances of large-scale waves, compared to the radiation wavelength, in six intervals depending on the wind speed and swell height. It is shown that the use of difference slope variances of the large-scale wave makes it possible to get rid of the influence of swell in the case of mixed waves and obtain a better correlation with the wind speed. A method is proposed for retrieving the declination degree for the spectrum of wave heights in given intervals of radiation wavelengths. Within the framework of this method, it is possible to retrieve the boundary wave numbers for each radiation wavelength.","PeriodicalId":44680,"journal":{"name":"Russian Journal of Earth Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On some possibilities of multi-frequency remote sensing of the water surface\",\"authors\":\"Yuriy A. Titchenko, V. Karaev, Yijun He\",\"doi\":\"10.2205/2022es000795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study is aimed at expanding the number of measured parameters to analyze the features of the formation of surface waves under the influence of wind. The paper develops an original approach to obtaining information on the variability of the short-wavelength part of the wave spectrum (examples are given for wavelengths from about 50 cm to 2 cm in 6 intervals) and the long-wave component of the wave spectrum (> 1 m) in marine conditions. Retrievable information about waves will allow studying the interaction of wind simultaneously with the short-wave and long-wave components of the wave spectrum and will be in demand by scientists involved in numerical modeling of the wave climate and interested in refining the model of near-surface wind interaction with waves. In addition, new information about the short-wave part of the wave spectrum in different wavelength ranges will improve the accuracy of near-surface wind speed retrieval from remote sensing data. This work is devoted to a theoretical analysis of slope variance retrieved from reflected acoustic pulses for different radiation frequencies depending on the near-surface wind speed and swell wave height. A study was made of the measured slope variances of large-scale waves, compared to the radiation wavelength, in six intervals depending on the wind speed and swell height. It is shown that the use of difference slope variances of the large-scale wave makes it possible to get rid of the influence of swell in the case of mixed waves and obtain a better correlation with the wind speed. A method is proposed for retrieving the declination degree for the spectrum of wave heights in given intervals of radiation wavelengths. Within the framework of this method, it is possible to retrieve the boundary wave numbers for each radiation wavelength.\",\"PeriodicalId\":44680,\"journal\":{\"name\":\"Russian Journal of Earth Sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Earth Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2205/2022es000795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Earth Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2205/2022es000795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在扩大测量参数的数量,以分析风作用下表面波形成的特征。本文提出了一种获取海洋条件下波浪谱短波长部分(波长约为50厘米至2厘米的6个间隔)和波浪谱长波部分(> 1米)变异性信息的新颖方法。关于波浪的可检索信息将允许同时研究风与波谱的短波和长波分量的相互作用,并且将是参与波浪气候数值模拟和对改进近地面风与波浪相互作用模型感兴趣的科学家所需要的。此外,不同波长范围内波浪谱短波部分的新信息将提高遥感资料反演近地面风速的精度。本文从理论上分析了不同辐射频率下反射声脉冲反演的坡度方差随近地面风速和浪高的变化规律。根据风速和浪高的不同,研究了大尺度波浪的坡度与辐射波长在6个区间内的变化。结果表明,利用大尺度波浪的不同斜率方差,可以在混合波的情况下消除膨胀的影响,获得与风速较好的相关性。提出了一种在给定辐射波长区间内反演波高谱赤纬度的方法。在该方法的框架内,可以检索每个辐射波长的边界波数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On some possibilities of multi-frequency remote sensing of the water surface
This study is aimed at expanding the number of measured parameters to analyze the features of the formation of surface waves under the influence of wind. The paper develops an original approach to obtaining information on the variability of the short-wavelength part of the wave spectrum (examples are given for wavelengths from about 50 cm to 2 cm in 6 intervals) and the long-wave component of the wave spectrum (> 1 m) in marine conditions. Retrievable information about waves will allow studying the interaction of wind simultaneously with the short-wave and long-wave components of the wave spectrum and will be in demand by scientists involved in numerical modeling of the wave climate and interested in refining the model of near-surface wind interaction with waves. In addition, new information about the short-wave part of the wave spectrum in different wavelength ranges will improve the accuracy of near-surface wind speed retrieval from remote sensing data. This work is devoted to a theoretical analysis of slope variance retrieved from reflected acoustic pulses for different radiation frequencies depending on the near-surface wind speed and swell wave height. A study was made of the measured slope variances of large-scale waves, compared to the radiation wavelength, in six intervals depending on the wind speed and swell height. It is shown that the use of difference slope variances of the large-scale wave makes it possible to get rid of the influence of swell in the case of mixed waves and obtain a better correlation with the wind speed. A method is proposed for retrieving the declination degree for the spectrum of wave heights in given intervals of radiation wavelengths. Within the framework of this method, it is possible to retrieve the boundary wave numbers for each radiation wavelength.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Earth Sciences
Russian Journal of Earth Sciences GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
1.90
自引率
15.40%
发文量
41
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信