分类概率中的d-分离准则

T. Fritz, Andreas Klingler
{"title":"分类概率中的d-分离准则","authors":"T. Fritz, Andreas Klingler","doi":"10.48550/arXiv.2207.05740","DOIUrl":null,"url":null,"abstract":"The d-separation criterion detects the compatibility of a joint probability distribution with a directed acyclic graph through certain conditional independences. In this work, we study this problem in the context of categorical probability theory by introducing a categorical definition of causal models, a categorical notion of d-separation, and proving an abstract version of the d-separation criterion. This approach has two main benefits. First, categorical d-separation is a very intuitive criterion based on topological connectedness. Second, our results apply both to measure-theoretic probability (with standard Borel spaces) and beyond probability theory, including to deterministic and possibilistic networks. It therefore provides a clean proof of the equivalence of local and global Markov properties with causal compatibility for continuous and mixed random variables as well as deterministic and possibilistic variables.","PeriodicalId":14794,"journal":{"name":"J. Mach. Learn. Res.","volume":"7 1","pages":"46:1-46:49"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"The d-separation criterion in Categorical Probability\",\"authors\":\"T. Fritz, Andreas Klingler\",\"doi\":\"10.48550/arXiv.2207.05740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The d-separation criterion detects the compatibility of a joint probability distribution with a directed acyclic graph through certain conditional independences. In this work, we study this problem in the context of categorical probability theory by introducing a categorical definition of causal models, a categorical notion of d-separation, and proving an abstract version of the d-separation criterion. This approach has two main benefits. First, categorical d-separation is a very intuitive criterion based on topological connectedness. Second, our results apply both to measure-theoretic probability (with standard Borel spaces) and beyond probability theory, including to deterministic and possibilistic networks. It therefore provides a clean proof of the equivalence of local and global Markov properties with causal compatibility for continuous and mixed random variables as well as deterministic and possibilistic variables.\",\"PeriodicalId\":14794,\"journal\":{\"name\":\"J. Mach. Learn. Res.\",\"volume\":\"7 1\",\"pages\":\"46:1-46:49\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Mach. Learn. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2207.05740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Mach. Learn. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.05740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

d分离准则通过一定的条件独立性来检测联合概率分布与有向无环图的相容性。在这项工作中,我们通过引入因果模型的分类定义,d-分离的分类概念,并证明d-分离准则的抽象版本,在分类概率论的背景下研究这个问题。这种方法有两个主要好处。首先,分类d分离是一个基于拓扑连通性的非常直观的标准。其次,我们的结果既适用于测量论概率(标准Borel空间),也适用于概率论之外,包括确定性和可能性网络。因此,它为连续和混合随机变量以及确定性和可能性变量提供了具有因果相容性的局部和全局马尔可夫性质的等价性的清晰证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The d-separation criterion in Categorical Probability
The d-separation criterion detects the compatibility of a joint probability distribution with a directed acyclic graph through certain conditional independences. In this work, we study this problem in the context of categorical probability theory by introducing a categorical definition of causal models, a categorical notion of d-separation, and proving an abstract version of the d-separation criterion. This approach has two main benefits. First, categorical d-separation is a very intuitive criterion based on topological connectedness. Second, our results apply both to measure-theoretic probability (with standard Borel spaces) and beyond probability theory, including to deterministic and possibilistic networks. It therefore provides a clean proof of the equivalence of local and global Markov properties with causal compatibility for continuous and mixed random variables as well as deterministic and possibilistic variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信