反馈控制的有效性以及COVID-19死亡与对策成本之间的权衡。

IF 2.3 3区 医学 Q2 HEALTH POLICY & SERVICES
Akira Watanabe, Hiroyuki Matsuda
{"title":"反馈控制的有效性以及COVID-19死亡与对策成本之间的权衡。","authors":"Akira Watanabe,&nbsp;Hiroyuki Matsuda","doi":"10.1007/s10729-022-09617-0","DOIUrl":null,"url":null,"abstract":"<p><p>We provided a framework of a mathematical epidemic modeling and a countermeasure against the novel coronavirus disease (COVID-19) under no vaccines and specific medicines. The fact that even asymptomatic cases are infectious plays an important role for disease transmission and control. Some patients recover without developing the disease; therefore, the actual number of infected persons is expected to be greater than the number of confirmed cases of infection. Our study distinguished between cases of confirmed infection and infected persons in public places to investigate the effect of isolation. An epidemic model was established by utilizing a modified extended Susceptible-Exposed-Infectious-Recovered model incorporating three types of infectious and isolated compartments, abbreviated as SEIIIHHHR. Assuming that the intensity of behavioral restrictions can be controlled and be divided into multiple levels, we proposed the feedback controller approach to implement behavioral restrictions based on the active number of hospitalized persons. Numerical simulations were conducted using different detection rates and symptomatic ratios of infected persons. We investigated the appropriate timing for changing the degree of behavioral restrictions and confirmed that early initiating behavioral restrictions is a reasonable measure to reduce the burden on the health care system. We also examined the trade-off between reducing the cumulative number of deaths by the COVID-19 and saving the cost to prevent the spread of the virus. We concluded that a bang-bang control of the behavioral restriction can reduce the socio-economic cost, while a control of the restrictions with multiple levels can reduce the cumulative number of deaths by infection.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":"26 1","pages":"46-61"},"PeriodicalIF":2.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9540046/pdf/","citationCount":"1","resultStr":"{\"title\":\"Effectiveness of feedback control and the trade-off between death by COVID-19 and costs of countermeasures.\",\"authors\":\"Akira Watanabe,&nbsp;Hiroyuki Matsuda\",\"doi\":\"10.1007/s10729-022-09617-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We provided a framework of a mathematical epidemic modeling and a countermeasure against the novel coronavirus disease (COVID-19) under no vaccines and specific medicines. The fact that even asymptomatic cases are infectious plays an important role for disease transmission and control. Some patients recover without developing the disease; therefore, the actual number of infected persons is expected to be greater than the number of confirmed cases of infection. Our study distinguished between cases of confirmed infection and infected persons in public places to investigate the effect of isolation. An epidemic model was established by utilizing a modified extended Susceptible-Exposed-Infectious-Recovered model incorporating three types of infectious and isolated compartments, abbreviated as SEIIIHHHR. Assuming that the intensity of behavioral restrictions can be controlled and be divided into multiple levels, we proposed the feedback controller approach to implement behavioral restrictions based on the active number of hospitalized persons. Numerical simulations were conducted using different detection rates and symptomatic ratios of infected persons. We investigated the appropriate timing for changing the degree of behavioral restrictions and confirmed that early initiating behavioral restrictions is a reasonable measure to reduce the burden on the health care system. We also examined the trade-off between reducing the cumulative number of deaths by the COVID-19 and saving the cost to prevent the spread of the virus. We concluded that a bang-bang control of the behavioral restriction can reduce the socio-economic cost, while a control of the restrictions with multiple levels can reduce the cumulative number of deaths by infection.</p>\",\"PeriodicalId\":12903,\"journal\":{\"name\":\"Health Care Management Science\",\"volume\":\"26 1\",\"pages\":\"46-61\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9540046/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Care Management Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10729-022-09617-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH POLICY & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Care Management Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10729-022-09617-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH POLICY & SERVICES","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种新型冠状病毒病(COVID-19)在没有疫苗和特异性药物的情况下的数学流行病建模框架和对策。即使无症状病例也具有传染性,这对疾病的传播和控制具有重要作用。有些病人康复后没有发病;因此,预计实际感染人数将大于确诊感染人数。本研究将确诊病例与公共场所感染者区分开来,考察隔离效果。利用改进的扩展易感-暴露-感染-恢复模型建立了流行病模型,该模型包含三种类型的感染区和隔离区,简称为SEIIIHHHR。假设行为限制的强度是可以控制的,并且可以分为多个层次,我们提出了基于住院活动人数的反馈控制器方法来实施行为限制。采用不同的检出率和感染者的症状比例进行数值模拟。我们调查了改变行为限制程度的适当时机,并确认早期启动行为限制是减轻医疗保健系统负担的合理措施。我们还研究了减少COVID-19累积死亡人数和节省防止病毒传播成本之间的权衡。结果表明,对行为限制进行“bang-bang”控制可以降低社会经济成本,而对行为限制进行多层次控制可以降低累计感染死亡人数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effectiveness of feedback control and the trade-off between death by COVID-19 and costs of countermeasures.

Effectiveness of feedback control and the trade-off between death by COVID-19 and costs of countermeasures.

Effectiveness of feedback control and the trade-off between death by COVID-19 and costs of countermeasures.

Effectiveness of feedback control and the trade-off between death by COVID-19 and costs of countermeasures.

We provided a framework of a mathematical epidemic modeling and a countermeasure against the novel coronavirus disease (COVID-19) under no vaccines and specific medicines. The fact that even asymptomatic cases are infectious plays an important role for disease transmission and control. Some patients recover without developing the disease; therefore, the actual number of infected persons is expected to be greater than the number of confirmed cases of infection. Our study distinguished between cases of confirmed infection and infected persons in public places to investigate the effect of isolation. An epidemic model was established by utilizing a modified extended Susceptible-Exposed-Infectious-Recovered model incorporating three types of infectious and isolated compartments, abbreviated as SEIIIHHHR. Assuming that the intensity of behavioral restrictions can be controlled and be divided into multiple levels, we proposed the feedback controller approach to implement behavioral restrictions based on the active number of hospitalized persons. Numerical simulations were conducted using different detection rates and symptomatic ratios of infected persons. We investigated the appropriate timing for changing the degree of behavioral restrictions and confirmed that early initiating behavioral restrictions is a reasonable measure to reduce the burden on the health care system. We also examined the trade-off between reducing the cumulative number of deaths by the COVID-19 and saving the cost to prevent the spread of the virus. We concluded that a bang-bang control of the behavioral restriction can reduce the socio-economic cost, while a control of the restrictions with multiple levels can reduce the cumulative number of deaths by infection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Health Care Management Science
Health Care Management Science HEALTH POLICY & SERVICES-
CiteScore
7.20
自引率
5.60%
发文量
40
期刊介绍: Health Care Management Science publishes papers dealing with health care delivery, health care management, and health care policy. Papers should have a decision focus and make use of quantitative methods including management science, operations research, analytics, machine learning, and other emerging areas. Articles must clearly articulate the relevance and the realized or potential impact of the work. Applied research will be considered and is of particular interest if there is evidence that it was implemented or informed a decision-making process. Papers describing routine applications of known methods are discouraged. Authors are encouraged to disclose all data and analyses thereof, and to provide computational code when appropriate. Editorial statements for the individual departments are provided below. Health Care Analytics Departmental Editors: Margrét Bjarnadóttir, University of Maryland Nan Kong, Purdue University With the explosion in computing power and available data, we have seen fast changes in the analytics applied in the healthcare space. The Health Care Analytics department welcomes papers applying a broad range of analytical approaches, including those rooted in machine learning, survival analysis, and complex event analysis, that allow healthcare professionals to find opportunities for improvement in health system management, patient engagement, spending, and diagnosis. We especially encourage papers that combine predictive and prescriptive analytics to improve decision making and health care outcomes. The contribution of papers can be across multiple dimensions including new methodology, novel modeling techniques and health care through real-world cohort studies. Papers that are methodologically focused need in addition to show practical relevance. Similarly papers that are application focused should clearly demonstrate improvements over the status quo and available approaches by applying rigorous analytics. Health Care Operations Management Departmental Editors: Nilay Tanik Argon, University of North Carolina at Chapel Hill Bob Batt, University of Wisconsin The department invites high-quality papers on the design, control, and analysis of operations at healthcare systems. We seek papers on classical operations management issues (such as scheduling, routing, queuing, transportation, patient flow, and quality) as well as non-traditional problems driven by everchanging healthcare practice. Empirical, experimental, and analytical (model based) methodologies are all welcome. Papers may draw theory from across disciplines, and should provide insight into improving operations from the perspective of patients, service providers, organizations (municipal/government/industry), and/or society. Health Care Management Science Practice Departmental Editor: Vikram Tiwari, Vanderbilt University Medical Center The department seeks research from academicians and practitioners that highlights Management Science based solutions directly relevant to the practice of healthcare. Relevance is judged by the impact on practice, as well as the degree to which researchers engaged with practitioners in understanding the problem context and in developing the solution. Validity, that is, the extent to which the results presented do or would apply in practice is a key evaluation criterion. In addition to meeting the journal’s standards of originality and substantial contribution to knowledge creation, research that can be replicated in other organizations is encouraged. Papers describing unsuccessful applied research projects may be considered if there are generalizable learning points addressing why the project was unsuccessful. Health Care Productivity Analysis Departmental Editor: Jonas Schreyögg, University of Hamburg The department invites papers with rigorous methods and significant impact for policy and practice. Papers typically apply theory and techniques to measuring productivity in health care organizations and systems. The journal welcomes state-of-the-art parametric as well as non-parametric techniques such as data envelopment analysis, stochastic frontier analysis or partial frontier analysis. The contribution of papers can be manifold including new methodology, novel combination of existing methods or application of existing methods to new contexts. Empirical papers should produce results generalizable beyond a selected set of health care organizations. All papers should include a section on implications for management or policy to enhance productivity. Public Health Policy and Medical Decision Making Departmental Editors: Ebru Bish, University of Alabama Julie L. Higle, University of Southern California The department invites high quality papers that use data-driven methods to address important problems that arise in public health policy and medical decision-making domains. We welcome submissions that develop and apply mathematical and computational models in support of data-driven and model-based analyses for these problems. The Public Health Policy and Medical Decision-Making Department is particularly interested in papers that: Study high-impact problems involving health policy, treatment planning and design, and clinical applications; Develop original data-driven models, including those that integrate disease modeling with screening and/or treatment guidelines; Use model-based analyses as decision making-tools to identify optimal solutions, insights, recommendations. Articles must clearly articulate the relevance of the work to decision and/or policy makers and the potential impact on patients and/or society. Papers will include articulated contributions within the methodological domain, which may include modeling, analytical, or computational methodologies. Emerging Topics Departmental Editor: Alec Morton, University of Strathclyde Emerging Topics will handle papers which use innovative quantitative methods to shed light on frontier issues in healthcare management and policy. Such papers may deal with analytic challenges arising from novel health technologies or new organizational forms. Papers falling under this department may also deal with the analysis of new forms of data which are increasingly captured as health systems become more and more digitized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信