基于交通灯数据的最先进目标检测器评估

M. B. Jensen, Kamal Nasrollahi, T. Moeslund
{"title":"基于交通灯数据的最先进目标检测器评估","authors":"M. B. Jensen, Kamal Nasrollahi, T. Moeslund","doi":"10.1109/CVPRW.2017.122","DOIUrl":null,"url":null,"abstract":"Traffic light detection (TLD) is a vital part of both intelligent vehicles and driving assistance systems (DAS). General for most TLDs is that they are evaluated on small and private datasets making it hard to determine the exact performance of a given method. In this paper we apply the state-of-the-art, real-time object detection system You Only Look Once, (YOLO) on the public LISA Traffic Light dataset available through the VIVA-challenge, which contain a high number of annotated traffic lights, captured in varying light and weather conditions.,,,,,,The YOLO object detector achieves an AUC of impressively 90.49% for daysequence1, which is an improvement of 50.32% compared to the latest ACF entry in the VIVAchallenge. Using the exact same training configuration as the ACF detector, the YOLO detector reaches an AUC of 58.3%, which is in an increase of 18.13%.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"43 1","pages":"882-888"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"Evaluating State-of-the-Art Object Detector on Challenging Traffic Light Data\",\"authors\":\"M. B. Jensen, Kamal Nasrollahi, T. Moeslund\",\"doi\":\"10.1109/CVPRW.2017.122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic light detection (TLD) is a vital part of both intelligent vehicles and driving assistance systems (DAS). General for most TLDs is that they are evaluated on small and private datasets making it hard to determine the exact performance of a given method. In this paper we apply the state-of-the-art, real-time object detection system You Only Look Once, (YOLO) on the public LISA Traffic Light dataset available through the VIVA-challenge, which contain a high number of annotated traffic lights, captured in varying light and weather conditions.,,,,,,The YOLO object detector achieves an AUC of impressively 90.49% for daysequence1, which is an improvement of 50.32% compared to the latest ACF entry in the VIVAchallenge. Using the exact same training configuration as the ACF detector, the YOLO detector reaches an AUC of 58.3%, which is in an increase of 18.13%.\",\"PeriodicalId\":6668,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"43 1\",\"pages\":\"882-888\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2017.122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66

摘要

交通信号灯检测(TLD)是智能车辆和驾驶辅助系统(DAS)的重要组成部分。大多数顶级域名的一般情况是,它们是在小型和私有数据集上进行评估的,这使得很难确定给定方法的确切性能。在本文中,我们将最先进的实时目标检测系统You Only Look Once (YOLO)应用于通过viva挑战获得的公共LISA交通灯数据集,该数据集包含大量在不同光线和天气条件下捕获的带注释的交通灯。,,,,,, YOLO目标检测器对daysequence1的AUC达到了令人印象深刻的90.49%,与vivchallenge中最新的ACF条目相比,这一AUC提高了50.32%。使用与ACF检测器完全相同的训练配置,YOLO检测器的AUC达到58.3%,提高了18.13%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating State-of-the-Art Object Detector on Challenging Traffic Light Data
Traffic light detection (TLD) is a vital part of both intelligent vehicles and driving assistance systems (DAS). General for most TLDs is that they are evaluated on small and private datasets making it hard to determine the exact performance of a given method. In this paper we apply the state-of-the-art, real-time object detection system You Only Look Once, (YOLO) on the public LISA Traffic Light dataset available through the VIVA-challenge, which contain a high number of annotated traffic lights, captured in varying light and weather conditions.,,,,,,The YOLO object detector achieves an AUC of impressively 90.49% for daysequence1, which is an improvement of 50.32% compared to the latest ACF entry in the VIVAchallenge. Using the exact same training configuration as the ACF detector, the YOLO detector reaches an AUC of 58.3%, which is in an increase of 18.13%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信